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On the Splitting Problem for Manifold Pairswith Boundaries

By M. CENCELJ, YU. V. MURANOV, and D. REpPovS

Abstract. The problem of splitting a homotopy equivalence along a sarifald

is closely related to the surgery exact sequence and to tidepn of surgery of
manifold pairs. In classical surgery theory there exist approaches to surgery
in the category of manifolds with boundaries. In theorglase the surgery on a
manifold pair is considered with the given fixed manifoldusture on the bound-
ary. In the relative case the surgery on the manifold withnloauy is considered
without fixing maps on the boundary. Consider a normal maprt@aifold pair

(Y, 3Y) c (X, aX) with boundary which is a simple homotopy equivalence on
the boundaryp X. This map defines a mixed structure on the manifold with the
boundary in the sense of M/L. We introduce and study groups of obstructions
to splitting of such mixed structures along submanifoldhvwbbundary(Y, 3Y).

We describe relations of these groups to classical surgehgplitting obstruction
groups. We also consider several geometric examples.

1 Introduction

Let (X", 3X) be a compact topologicai—-manifold with boundary. The set
SCAT(X, 9X) of CAT-manifold structuresGAT = TOP, PL, DIFF) on (X, 3X)
consists of the classes of concordance of simple homotopiyagnces of pairs
f:(M,aM) — (X, dX), where(M, aM) is a compacCAT-manifold pair of di-
mensiom with boundary (see [7], [8], and [11]). ifX already has &AT-manifold
structure then the set of manifold structuresXomvhich are fixed on the boundary
is denoted bysSAT(X, 3X).

Let 7CAT(X, 9X) be the set of classes of normal bordisms of normal maps to
the pair(X, X) and 7;,>AT(X, 8X) the set of reb classes of normal bordisms of
normal maps (see [7], [8] and [11]).

LetY c X be a submanifold of a closed manifold' of codimensiorg. Given
anormal mag f, b) : M" — X", there is a problem of finding a simple homotopy
equivalence : M1 — X in the class of normal bordisng {, b)], which is transver-
sal toY and such thaN = g~1(Y) is a submanifold oM; and the restrictions

gIn N =Y, glwpn i M\ N = X\ Y (1.1)
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are simple homotopy equivalences. The obstruction grougdimg such surgery is
denoted by Pn_q(F) (see [11] and [8]), where

71(S(E) — m(X\Y)
F=| | ! (1.2)

(D) —  m(X)

is a pushout square of fundamental groups with orientaolsS(¢) is the bound-
ary of a tubular neighborhodd (¢) of Y in X.

If f: M — Xisasimple homotopy equivalence then the obstruction tarfgnd
a map in the homotopy class of the mamvith properties (1.1), which is transversal
to Y, lies in the splitting obstruction groups,_q(F) (see [11], §11 and [8], §7.2).

Let (Y, dY) C (X, aX) be a codimensiog manifold pair with boundary. In the
reld case the seI‘BCAT(X, aX) of tangent structures consists of classes of concor-
dance rel boundary of normal maps

(f,9f): (M, aM) — (X, 3X)
with a fixedCAT-isomorphism
of : oM — aX
which is already split on the boundary. We have a map
TAT(X, 9X) — LPn_q(F) (1.3

which is given by mapping the obstruction to surgery to themred map of manifold
pairs rel boundary.
In a similar way we have a map

SEAT(X, 9X) = LSh—q(F) (1.4

to the splitting obstruction group.
It follows from [11], 811, page 136 (see also [12]) that foe tielative case we
have maps

T CAT(X, X) = LPn_q(Fy — F) (1L5)
similarly to (1.3) and (1.4) and
8CAT(X,8X) — LSh—q(Fs — F) (1.6)

to the relative obstruction groups whefg is a pushout square for a splitting prob-
lem of the pairY c 9 X.

In accordance with WLL [11], 810, p. 116 (see also [3]), it is possible to intro-
duce a mixed type of structures on a manifold with boundatys X). Consider a
normal map

(f,0f): (M, M) — (X, dX)
for which the map
af :0M — 9X
is a simple homotopy equivalence. Two such maps are congbifdaey are nor-

mally bordant by a bordism for which a restriction to bordisetween the bound-
aries is an equivalence i8°AT(3X). Denote the set of concordance classes by
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7 8CAT(X, 3X). The elements of” §CAT(X, 9X) are called mixed structures on
(X, X).

In the present paper we shall workTi®P-category and simple surgery obstruc-
tion groups (see [7] and [8]). We think of all surgery andtiplg obstruction groups
as decorated by an "s" although we do not write it.

We introduce groupkPS.(Fy — F) and define a map

Y T8(X,0X) = LPS.(Fy — F)

which gives an obstruction to finding a map in the class of ood@nce which is
split along the submanifold pafly, aY) C (X, 3 X).

We study properties of the introduced groups and theirioglatto surgery and
splitting obstruction groups. The main results are givenbbgids of exact se-
guences. Then we consider several geometric examples shwé compute the
introduced groups and natural maps.

In Section 2 we give explicit definitions of several struetsets and recall the
necessary technical results about the algebraic surgant szquences ofAICKI
and the surgery.-spectrum.

In Section 3 we recall main properties of splitting obstimetgroups and intro-
duceLPS.-groups. These groups are realized as homotopy groups afcargm.
We describe algebraic properties of these groups andaeatf these groups to
surgery and splitting obstruction groups and to surgerges@quence.

In Section 4 we consider geometric examples in which we caelfRS.-groups
and natural maps between introduced groups and classis@licbon groups which
arise naturally in the considered problem.

2 Structuresetsand surgery exact sequence

For definitions of structure sets we shall followaRickl [8]. Let X" be a closed
topological manifold. At-triangulation ofX is a topological normal map (see [8],
81.2)
(f,b: M — X,
whereM is a closed-dimensional topological manifold. Twietriangulations
(fi,b): M - X,i=0,1
are concordant [8], 87.1 if there exists a topological ndnmep of triads
((9, ©); (fo, bo), (f1, b1)) 1 (W; Mg, M1) — (X x I; X x {0}, X x {1})

wherel = [0, 1]andW is a compactn + 1)-dimensional manifold with boundary
dW = Mg U M3. The set of concordance classes-tfiangulations oiX is denoted
by 7 TOP(X). Note that we shall consider the case of a manitéldnd hence the
set7 TOP(X) will be nonempty.
An s-triangulation of a closed topological manifok!" is a simple homotopy
equivalencef : M — X, whereM is a closed topological-dimensional manifold.
Two s-triangulations

(fi,b) M — X,i=0,1
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are concordant [8], 87.1 if there exists a simple homotomvedence of triads
(@; fo, f1) : (W; Mo, M1) — (X x I; X x {0}, X x {1})

whereW is a compactn + 1)-dimensional manifold with the boundatyv =
Mo U M1. The set of concordance classessdfiangulations ofX is denoted by
8TOP(X). This set is called theopological manifold structure setis before, the
set$TOP(X) will be nonempty. These sets fit in the surgery exact sequeed8],
§7 and [11])

c Ly (ra (X)) — 8TP(X) — 7TOF(X) — Ln(ra(X)) 2.1)

whereL . (71(X)) are surgery obstruction groups.

Now consider the case of a compaetlimensional manifold with the bound-
ary dX. First, we consider the case of structures which are fixedherbbundary.
This is the reb case. At-triangulation of(X, 9 X) is a topological normal map of
pairs (see [8], §7.1)

((f,b), (8f, 8b)) : (M, IM) — (X, IX)
with a homeomorphisraf : 9M — 9 X. Two ty-triangulations
((fi, bi), @fi, abp)) : (Mi, dMj) — (X,9X), i =0,1
are concordant if there exists a topological normal map

((h, d); (g, ©), (fo, bo), (f1,b1)) :
(W;V, Mg, M) > (X x ;X x I, X x {0}, X x {1})
with
V=0MgxlIl, 0V =090MgU M1
and
(g,c)=0fgx1:V —> X xI.
The set of concordance classes is denote@;ﬁ@T(x, 3X) (see [11], 810 and [8],
§7.1).
An s;-triangulation of(X, 3 X) is a simple homotopy equivalence of pairs (see
[8], §7.1)
(f,af): (M, M) — (X, 3aX)
with a homeomorphisraf : 9M — 9 X. Two s;-triangulations
(fi, afi) : (Mi, aMi) — (X,9X), 1 =0,1
are concordant if there exists a simple homotopy equivalend-ads
(h; g, fo, f1) 1 (W; V, Mg, M1) — (X x 150X x I, X x {0}, X x {1})
with
V =0Mgp x|, 3V =9MgU dM;
and
g=0fgx1:V —>aXxI.

The set of concordance classes is denotedW(X, 3X) (see [11], 810 and [8],
§7.1).



On the Splitting Problem for Manifold Pairs with Boundaries 39

These sets fit in the surgery exact sequence (see [11], §1[8ja&d)
coo = Loga(ma(X) — 857X, 9X) — 77X, 8X) — La(ra(X)). (2.2)

Now consider the relative case of structures on a manifotti Wwoundary. A
t-triangulation of(X, 8 X) is a topological normal map of pairs (see [8], §7.1)

((f,b), (8f,8b)) : (M, M) — (X, 3X).
Two t-triangulations
((fi, b)), @fi, aby)) : (Mj, aM;) — (X, 98X), i =0,1
are concordant if there exists a topological normal map afig-

((h, d); (g, ©), (fo, bo), (f1,b1)) :
(W; V, Mg, M1) > (X x 159X x I, X x {0}, X x {1})
with
oV = 0Mg U aM;.
The set of concordance classes is denotet89T(X, 8 X) (see [11], §10 and [8],
87.1).
An s-triangulation of(X, 8 X) is a simple homotopy equivalence of pairs (see
[8], §7.1)
(f,0f) 1 (M, aM) — (X, 3X).
Two s-triangulations
(fi, afi) : (Mi, aMi) — (X,9X), 1 =0,1
are concordant if there exists a simple homotopy equivalend-ads
(h; g, fo, f1) 1 (W; V, Mg, M1) — (X x 150X x I, X x {0}, X x {1})
with
aV = dMgo U dMy.

The set of concordance classes is denoted 8y (X, 3 X) (see [11], §10 and [8],
§7.1).
These sets fit in the surgery exact sequence (see [11], §1[8ja&d)

s> $TOP(X aX) = TTOP(X, aX) = Ln (71(8X) = m1(X)). (2.3

Now we define mixed structures on a manifold with boundarg [$&], page 116
and [3]). Ats-triangulation of(X, 3 X) is a topological normal map of pairs

((f,b), (af, 8b)) : (M, M) — (X, dX)
such thavf : 9M — 9 X is ans-triangulation. Twds-triangulations
((fi, b)), @fi, aby)) : (Mj, aM;) — (X, 98X), i =0,1
are concordant if there exists a topological normal map

((h,d); (9, ©), (fo, bo), (f1, b)) :
(W;V, Mg, M1) > (X x ;X x I, X x {0}, X x {1})
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with
oV = Mg U dM¢
andg : V — 9X x | is a concordance aftriangulationsdfg andafi. The set of

concordance classes is denotedibg'©P(X, 9 X) (see [11], page 116).
It follows from definitions (see also [3]) that the followimgtural forgetful maps

7 8TOP(X, aX) — TTOP(X, 8 X),
8TOP(X, aX) — T 8TOP(X, 9 X), (2.4)
7 8TOP(X, 9X) — 8TOP(HX)

are well-defined.
The maps in (2.4) fit in the following exact sequences (seg Hdge 116, [8],
§7,and [3])

s = Ln(m(@X)) — T8TOP(X, aX) — TTOP(X, 8X) = Ln_1(m1(3X)),
(2.5)

oo > Lppa(m(X)) = 8TOP(X, 9X) — T8TOP(X, aX) — Ln(r1(X)), (2.6)
and

= TTOP(X, 9X) — T8TOP(X, 9X) — 8TOP(9X). (2.7)

We now recall the necessary results concerning the apiplicat homotopy cat-
egory of spectra to surgery theory (see [1], [2], [4], [5], [@d [7]). A spectruni
is given by a collection o€ W-complexeq (En, %)}, n € Z, together with cellular
maps{en : SE, — Enyt1}, whereSE, is the suspension of the spaEg (see [11]).
A spectrumE is an2-spectrum if the adjoint maps, : En — QEn;1, n € Z are
homotopy equivalences.

In the category of spectra the suspension fun&taand iterated functor&X,

k € Z are well-defined (see [10]). For every spectriinwe have an isomorphism
of homotopy groups (E) = 7.k (ZKE). Recall that in the homotopy category of
spectra the concepts of pull-back and push-out squaresjaieaéent.

In accordance with [7], [8], and [11] the surgery obstruatgroupsL () and
such natural maps as induced by inclusion and transfer alieed on the spectrum
level. Thatis, for every group with a homomorphism of orientation: = — {+1}
there exists a®-spectrumL (rr, w) with homotopy groups

mn(L(m, w)) = Ln(m, o).

In what follows we shall not include homomorphism of origi@a in our notation
and will assume that all groups are equipped with such a haynginism and all
homomorphisms of groups preserve orientation. Any homgimnem of groups
f : # — G induces a cofibration of spectra

L) —» L(G) — L(f) (2.8
wherelL( f) is the spectrum for the relatie-groups
Ln(f) = Ln(r — G) = m(L(f)).
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We have a similar situation for the transfer map (see for etanfll1] and [12]).
Let X be a topological space. An algebraic surgery exact sequariRaNICKiI

(see [7] and [8])
<= Lnp1(mi(X)) = Snp1(X) = Hn(X, Le) = Ln(71(X)) — -+ (2.9)

is defined. Herd., is the 1-connected cover of the surgélyspectrumiL(1) with
{L.}o >~ G/TOP. The algebraic surgery exact sequence (2.9) is the homédogy

exact sequence of the cofibration
X4 A Le = L(m1(X)). (2.10)
By definition, we have$i (X) = 7; (S(X)) for the homotopy cofibe®(X) of the
map in (2.10). For a closattdimensional topological manifold we have
Tn1(S(X)) = 8n41(X) = 8TOF(X), T (X) = Hn(X; La), (2.11)

and the surgery exact sequence (2.1) is isomorphic to thedef of the algebraic
surgery exact sequence (2.9) (see [8], Proposition 7.1.4).

For the case of a compact topological manifldvith boundaryd X the alge-
braic surgery exact sequences for the relative case artufoely case are contained
in the following commutative diagram (see [7] and [8], §87)

! ! ! !

- Lnga(m) = 82,.(X,0X) > Ha(X;La) — Ln(m)
\ \ \ |
Llel = $na(X,0X) > Hn(X,9X;L) —> LI - (212
\ \ \ |
Ln(p) —  4$n(@X) — Hn_1(0X;Le) — Lp_1(p) ---

) ) ! !

wherer = 71(X), p = 71(3X), andL'™ = L,(p — =). Diagram (2.12) is
realized on the spectrum level (see [8], [1], and [3]). WealerbyS(X, 3 X) the
homotopical cofiber of the map

(X/0X)+ ALy = L(p — m),
and byS? (X, 3 X) the homotopical cofiber of the map

X+ ALe — L(m).

We have

mi(S?(X, aX)) = 2 (X, aX)
and

7 (S(X, aX)) = &i (X, 3X).
For a topological manifoldX the left part of the upper row of diagram (2.12) is

isomorphic to the exact sequence (2.2). The left part of tiell®m row of diagram
(2.12) is isomorphic to the exact sequence (2.3).
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In particular, we have the isomorphisms
STOP(X, 8X) = S1a(X, 8X),  SIOP(X, 9X) = S 4(X, 9X), (2.13)
and
TTOP(X, 9X) = Hn(X, 0X; La), T3 OF(X, 8X) = Hn(X; Ls). (2.14)
Consider the composition
Lnt1(m1(X) = Lnga(mi(@X) — 71(X)) — 87°7(X, 8X) (2.15)

where the first map lies in the relative exact sequence-gfoups for the map
m1(0X) — mw1(X) and the second map lies in (2.3). It follows from (2.12) thnest t
composition (2.15) is realized by a map of spectra (see 830 [

L(m1(X)) = S(X, aX) (2.16)
and the cofiber of the map in (2.16) is denotedll$( X, 3 X). We shall denote
Tn(TS(X, 8X)) = T 8n(X, aX)
and we get an isomorphism [3]
T 8nr1(X, 0X) = T 8TOP(X, 9X).

Note that in a similar way (see [3]) it is possible to descthrespectrunTS(X, 9 X)
as the homotopical cofiber of any of the following maps

S@X) = B(X4 ALe) and (X/dX)y ALe) — TL(m@@X)). (217

3 Splitting problem for a manifold with boundary

Let (X, Y, &) be a codimension(= 1, 2) manifold pair in the sense of /RlICKI
(see [8], page 570), i.e. a locally flat closed submanif6ig given with a normal
block bundle

& =&ycx 1 Y —> BTORQ)
for which we have a decomposition of the closed manifold

X = D(§) Use) X\ D),
whereD (&) is the total space of the normal block bundle with the boun@®a).
In accordance with [8], p. 570 the paiiX, Y) has an underlying structure of
an (n,n — g)-dimensionak-normal geometric Poincaré pair with the associated
(DY, S9-1) fibration

(D%, ' — (D(®), SE) — V. 3.1

The fibration (3.1) provides transfer maps on the spectrwal Igsee [1], [6],
[11], and [12])

p*: L(ra(Y)) = QIL (71(S(§)) — 71(D())) (32

and
p; : L(m1(Y)) — QI (1(S())) - (3.3
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Transfer maps (3.2) and (3.3) fit in a homotopy commutatiagidim of spectra

ft
L(r1(Y)) * QIL(r3(S(8))) — m1(D(§) — QIL(ra(X \ Y) — 71(X)

pi\ ! l (3.4)

QI ML(71(S(§))) — QITIL(m (X \ V),

where the horizontal maps of the right square are inducelldhaorizontal maps of
F and the vertical maps are the maps from cofibrations of spastin (2.8) for the
vertical maps of the squatre.

The spectrunLS(F) for splitting obstruction groups of the manifold pairc X
and the spectrurhP(F) for surgery obstruction groups of the manifold pair fit in
the homotopy commutative diagram of spectra

QL(1(Y)) — QIHL (71 (X \ Y)) — 71(X)) — LS(F)

I- I | e

QL(m1(Y)) — QIL(71(X\Y)) ———— LP(F)

where the left horizontal maps are compositions from diaga.4) and the right
square is the pullback (see [1], [10], and [11]). In parteyive have the isomor-
phisms
mn(LS(F)) = LS(F), mn(LP(F)) = LPn(F).
A topological normal map [8], §7.2
((f,b), (9,0) : (M, N) = (X,Y)

to the manifold paiK X, Y, &) is represented by a normal maf b) to the manifold
X which is transversal t¥ with N = f ~1(Y), and(M, N) is a topological manifold
pair with the normal block bundle

fIN

viN Ny £, BTORQ).

Additionally, the following conditions are satisfied:
(i) the restriction
(f.b)In=1(9,0):N—>Y

is a normal map;
(ii) the restriction

(f,b)lp = (h,d) : (P, S(v)) — (Z, S(§))
is a normal map to the paiZ, S(¢)), where
P=M\D(), Z=X\D();

(iii) the restriction
(h, d)|sw) : S(v) = S(§)
coincides with the induced map
(9.0 S) > S(&),
and(f,b) = (g, c)' U (h, d).
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The normal maps t@X, Y, &) are calledt-triangulations of the manifold pair
(X,Y) and the set of concordance classes-bfangulations of the pai¢X, Y, &)
coincides with the set dftriangulations of the manifol&X [8], Proposition 7.2.3.

An s-triangulation of a manifold paifX, Y, &) in topological category [8], p. 571
is at-triangulation of this pair for which the maps

f:M— X, g:N-=Y, and(P, S(v)) — (Z, S(&)) (3.6)

are simple homotopy equivalencest(iangulations). The set of concordance
classes ob-triangulations is denoted b§™OP(X, Y, &) (see [8], page 571). Nat-
ural forgetful maps

STOP(X,Y, &) - 8TOP(X) and 8TOP(X,Y, &) — 7TOP(X) (3.7

are well-defined (see [8], §7.2). We have also the maps ofigatibstruction (see
(8], page 572)

8TOP(X) = LS1—q(F) and 7TOP(X) — LPy_q(F). (3.8)

The maps in (3.7) and (3.8) are realized on the level of sadste [1], [8], §7.2,
and [11]). We shall denote (X, Y, &) the homotopy cofiber of the map

X4+ AL, > ZILP(F)
and bysi (X, Y, &) = 7 (S(X, Y, &)) its homotopy groups. We have an isomorphism
Snpa(X. Y. £) = STOP(X, Y, £). 3.9

The maps from (3.7) and (3.8) fit in several diagrams of exagtisnces which are
given in [8], Proposition 7.2.6. The diagram

— Lopa(m(X)) - LSq(F) - (XY, §) —
/ N 7N / N
5n+1(x) LPn—q(F) (3-10)

NS NS NS
= (X, Y, ) —  Ha(X;Le)  —>  La(@m(X)) —

from [8], Proposition 7.2.6 is realized on the spectrumll@ith the left part { > n)
which is isomorphic to a geometrically defined diagram (8edage 582) contain-
ing structure setgT™OP(X), 8TOP(X, Y, &), 7 TOP(X), in accordance with isomor-
phisms (2.11) and (3.9). Note here that the geometric verdidiagram (3.10) also
contains the maps from (3.7) and (3.8).
Let

(Y, dY) C (X, aX) (3.1
be a codimensiom manifold pair with boundary. A manifold pair (3.11) with
boundaries defines a pair of closed manifddsc 9 X with a pushout square

m1(S(9§)) — 710X\ 9Y)
Fo = | .

71(0Y) —  mw(dX)

of fundamental groups for the splitting problem. A naturadlisions : 9 X — X
induces a map : Fy — F of squares of fundamental groups.

(3.12
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In the reld-case we considértriangulations
(f,0f): (M, daM) — (X, dX) (3.13

which are split on the boundary aload’. The classes of concordance relative to
the boundary of such maps give the $gCP(X, 3X) (see [8], §7.2) and the map

TTOP(X, 9X) = LPn_q(F) (3.14)

defines a red codimensiorg splitting obstruction alony c X (see [8], §7.2).

In a similar way (see [8], §7.2) we can consider @triangulation of pairs
(3.12) which is split along the boundary. The set of concocgareld classes is
53TOP(X, dX) and a reb codimensioryg splitting obstruction gives a map

8TOP(X, 8X) = LS—q(F). (3.15)

As in the case of closed manifolds denote&jfp(x, Y, &) the set of classes of
concordance rél maps which are split along c X.

The algebraic version of surgery exact sequence (2.2) gathidic versions of
the maps (3.14) and (3.15) fit in the commutative braid of egaguences

— Ln41(71(X)) - LS—q(F) = X Y9 —
7N 7N 7N
80 1 (X, 9X) LPh_q(F) (3.16)
NS NS NS

- 80X Y8 —  Ha(X;Ly)  —  La(m(X) —

Diagram (3.16) is realized on the level of spectra and#6r= ¢ coincides with the
diagram (3.10). The left part = n) of diagram (3.16) is isomorphic to geometri-
cally defined diagram similarly to diagram (3.10). In paurtar,

S2(X Y, 6) = mi (S (X, Y, §)), and 2, (X, Y, &) = 8]°P(X, Y, £). (317
Denote byL.S,(A) = LS, (Fy — F) andLP,(A) = LP.(Fy — F) the relative
groups for the map of squaras: Fy — F whichisinduced by the natural inclusion

8 : aX — X. Itfollows from functoriality of diagram (3.5) that theselative groups
are realized on the level of spectra. We have cofibratios-spectra

LS(Fy) — LS(F) — LS(A) (3.18)
and

LP(Fy) — LP(F) — LP(A) (3.19)
where

mLS(A)) ELS(Fy — F) and my(LP(A)) = LPh(Fy — F).
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These groups fit in the commutative diagram of exact seq@ence

) ) ) }

Lnt1(p) = LS—q(Fy) = LPnq(Fy) -  Ln(p)
\ \ \ \
Lnyi(m) — LS q(F) — LPhq(F) — La(@m) --- (320
\ \ \ \
- Lnp1(p = 1) = LS1_q(A) = LPn_q(&) — Ln(p = 71) ---

¥ ¥ ¥ ¥

wherer = 1(X) andp = 71(3 X). Diagram (3.20) is realized on the level of spec-
tra and the two middle columns are homotopy long exact sempsawf cofibrations
(3.18) and (3.19).

Now consider relative structure groups for a codimensjananifold pair with
boundaries (3.11). We have a normal block burniéleéd¢) over the paicY, aY) and
a decomposition

(X, 9X) = (D(§) Usg) Z, D(3§) Usag) 0+2) (321
where(Z; 0+Z, S(&); S(9&)) is a manifold triad. Note here that
9,7 = 9X \ D(0¢).
A topological normal map (3.13) of manifold pairs with boamigs provides a
normal block bundlév, dv) over the pairN, dN), where (see [8], p. 570)
(N, aN) = (F71(Y), @) H@Y)).
We have the following decomposition
(M, M) = (D(v) Us) P, D(8V) Us(ay) 34 P) (3.22)
where(P; 94+ P, S(v); S(dv)) is a manifold triad.
Let
(f,0f): (M, daM) — (X, dX)

be a normal map of a codimensionpair with boundaryN, 9N) c (M, aM)

to a codimensiom pair (Y, dY) c (X, dX). Itis ans-triangulation if the maps
f: M — Xanddaf : dM — 39X ares-triangulations of corresponding codimen-
sionq pairs. We shall denote the set of concordance classssgrngulations of
the codimension manifold pair (3.11) by

8TOP(X, Y; 9) = 8TOP(X, 0X; Y, 3Y; £, 3(§)).

The relative surgery theory (see [8], §7.2, [10], 8§11, arfd)[yuarantees that this
structure set fits in the following exact sequences.

o= $TOP(X, Y5 8) = TTOP(X, 8X) — LPn_q(A) (3.23)
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and
= 8TOP(X, Y5 8) — 8TOF(X, 8X) — LSi_q(A) (3.24)
Proposition 1. There exists a®-spectrunfS(X, Y; 9) with homotopy groups
S(X,Y; ) Zm(S(X, Y;3) and Sna(X, Y5 ) = $TOF(X, Y5 9). (325
There are algebraic versions of exact sequences (3.23)a2d)

5 01 (X Y5 8) = Hn(X, 9X; L) —> LPn_q(A) — --- (3.26)
and
w0 = S (X, Y5 0) = Snga(X,0X) = LSq(A) = -+ (3.27)
which are realized on the spectrum level by cofibrations
(X/3X)4 ALe > ZILP(A) — S(X,Y; d) (3.29)
and
S(X, aX) > TIHLS(A) - =S(X, Y; ), (3.30)

respectively.

Proof. Commutative diagram (2.12) is generated by a homotopy camtive dia-
gram of spectra

! ! !

> @X)4ALe > L(p — SOX) — .-
\: \: \:

> XyAle - L@ - SPX X)) — --- (3.31)
\: \ \

- = (X/9X)y ALy > L(p > ) > S(X,0X) — ---

! ! !

in which each row and column is a cofibration sequence. Comuimatdiagram
(3.20) is generated by a homotopy commutative diagram aftepe

! ! |

- —> LS(Fy) - LP(Fy) - T 9L(p) — ---
\ \ |

- —> LS(F) - LP(F) - X 9L@#) — --- (3.32
\ \ \

\ \ \
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in which each row and column is a cofibration sequence. Censichomotopy
commutative square of spectra

@X)4 ALe — ZILP(Fy)

! ! (3.33)
X; AL, — S9LP(F)

in which the vertical maps are induced by the inclusicemd the horizontal maps
follows from diagram (3.10) of the manifold palty ¢ 9X and from diagram
(3.16), respectively. Denote I8(X, Y; 3) a spectrum fitting in the diagram extend-
ing the square (3.33) by cofibration sequences

! ! !

- > @X)y AL, — TILP(Fy) — S@X,dY,dE) — ---
\ ) \

. —>  XyAlL, — TILP(F) - S(X, Y, &) — --- (3.34)
\ ) \

o= (X/0X)4 ALy = TILP(A) - S(X,Y;d) — ---

- = \

LetSi(X,Y; 9) = mi(S(X, Y; d)). The papers[7], [8], §7.2,and [11], 817A provide
commutative squares

Hnk(X; Le) ———— LPn_q4k(A)
t]= 1=
7TOP(X x DK, 3(X x D¥)) — LPn_g4k(A)
and
Hn(X, 3X; Ls) — LPn—q(A)

t]= 1=
7 TOP(X, dX) — LPn_q(A).
Note that the exact sequence (3.26) is obtained by applgafunctorrg to the bot-
tom cofibration in (3.34). Now, using geometric descriptidrsurgery spectra (see
[7] and [8]), an element € $n+1(X, Y, d) is defined by a paiy, z), consisting of
anormal map bordism clagse Hn(X, 8X; L,), for whichi(y) = 0 € LPh_q(A),

and a particular solutionof the associated surgery problem for manifold pairs with
boundaries that defines a class of equivalence

{((f 1 M = X)} € 8TOP(X, Y, 9).
We obtain the map

o 81X, Y, ) — 8TOP(X, Y, 9).
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Recall, thatin geometrically defined exact sequence (3@3nap Pn_q+1(A) —
$TOP(X, Y, 9) is an action. Now from the definition of the mapfollows the com-
mutative diagram (see [7] and [10])

LPn—q+1(A) — 8n11(X, Y, ) — Hn(X, 0X; L)

1= o t]=

LPn—q+1(A) — 8TOP(X, Y, 8) — T TOP(X, 9 X).

Using the Five Lemma we obtain an isomorphism between (Z88)(3.26). The
case of exact sequence (3.27) follows from a homotopy cortimatdiagram of
cofibrations

! !

{
- — S(OX,9Y,08) —  S(OX) — TUILS(Fy) — ---
{ { {
= SUX,Y, &) — SUX,9X) » TIHILS(F) — ... (3.35)
2 2 \:
> S(X,Y:9) — S(X,0X) > TAHILSA) — .-

¥ ¥ 2

which is similar to (3.34). Diagram (3.35) follows from catharation of the cofi-
bration sequences of the right upper square in (3.35). O

Consider the composition
LS. (Fy) — LP.(Fy) — LP.(F) (3.36)

of geometrically defined maps from diagram (3.20). The caositjpm (3.36) is re-
alized by a map of spectra

LS(Fy) — LP(F) (3.37)

which is the composition of maps from diagram (3.32). We detize homotopical
cofiber of the map (3.37) bikPS(A) and its homotopy groups by

LPS(A) = 7 (LPS(A)). (3.38)
In particular, we have a cofibration

LS(Fy) — LP(F) — LPS(A). (3.39)
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Theorem 2. There exists the following cofibration of spectra
S(X,Y, d) — TS(X, aX) - ZITILPS(A). (3.40)

Proof. Consider the following homotopy commutative diagram ofcgze

S@X, dY, d&) — SY(X, Y, &) — S(X, Y; 9)

| | |

S(@X) —— Z(X4 A L) — TS(X, 9X) (3.4)

l l l

SAHLS(Fy) — ZAHLP(F) — T9HILPS(A)

in which all rows and columns are cofibration sequences. @tdbttom square of
(3.41) follows from the commutative diagram

S(@X, dY, 9E) — S(IX, dY, d&) — SI(X, Y, &)

| | |

S(@X) —— B(@X)4 ALy — (X4 ALy (342

l l l

SAHILS(Fy) — SAHLP(Fy) — SAHLP(F)

in which the commutative part consisting of the two left sgsafollows from the
diagram (3.10) on the spectrum level for the manifold pairc X and the com-
mutative part consisting of the two right squares fits in43.3 he vertical columns
of (3.42) are cofibrations. The left column of (3.41) coiregdvith the left column
of (3.42), and the middle column of (3.41) coincides withtigét column of (3.42).
The right vertical maps in (3.41) are defined as map of cofibnsrizontal maps in
accordance with (2.17), (3.35), and (3.39). The left uppeizontal map in (3.41)
is the composition

S@X, Y, &) —> S(X, dY, 9E) — S (X, Y, £) (3.43
from the diagram (3.42). The right column of cofibration 3. cofibration (3.40).
([l
Corollary 3. There exists the following long exact sequence
s = (X, Y50) = T48n(X,0X) = LPS _g-1(A) — - -- (3.44)

Proof. The exact sequence (3.44) is the homotopy long exact seguédtice cofi-
bration (3.40). O
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Corollary 4. There is a map
©: 78™P(X,0X) — LPS,_q(A)

of obstructions to splitting along the submanifold with bdary (Y, dY). For a
representative z= ((f, b), (9f, ab)) we have® (z) = Oif and only if the class of z in
7 8TOP(X, X) contains a representative which is split alofg 9Y) c (X, 3X).

Proof. We have the commutative diagram

Sni1(X, Y, 8) — STOP(X,Y;d)
- U (3.45)
T 8nt1(X, 8X) — T8TOP(X, §X)

in which the horizontal maps are isomorphisms, the rightis@rmap is a natural
forgetful map, and the left vertical map follows from (3.4Mpw the diagram (3.41)
and the exact sequence (3.44) provide the result of the @oyol O

From now on we describe algebraic properties®8.-groups and their relations
to splitting and surgery obstruction groups.

Theorem 5. There exists a braid of exact sequences
— LPpa(Ad) — Ln+q(p) - L&) —

/! N /! N /! N
LPnh(Fy) LPS,(A) (3.46)
N /! N /! N /!
— LS (Fy) — LPnh(F) — LPh(A) —,
— Lntq+1(7) - LS(A) - LPh(A) —
/! N\ /! N\ /! N\
Lntg+1(p — ) LP&(A) (3.47)
N /! N /! N /!
— LPny1(A) — Ln+q(/0) — Ln+q(7T) -,
and

- L&F) —  LPa(F) - Lnyq(m) —
7N 7N 7N
LS\ (F) LPS(A) (3.48)
NS NS NS
— Lnpgr1(m) — LSi(A) —  LS-a(Fy) —,

wherep = 71(dX) andn = 71(X). Diagrams (3.46)—(3.48) are realized on the
spectrum level.

Proof. It follows from the definition of spectr&PS and diagram (3.32) that we
have a homotopy commutative diagram of spectra

LS(F3) — LP(F3) — =79L(p)

1= ! 1 (3.49

LS(Fy) — LP(F) — LPS(A)
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where the rows are cofibrations and the right vertical mapdaéed by the two left
vertical maps (see [10]). The right square in (3.49) is aadk square since fibers
of horizontal maps are naturally homotopy equivalent. Hetie right square in
(3.49) is a pushout square and homotopy long exact sequehtas square give
the braid of exact sequences (3.46). From diagram (3.32)%ndlemma 2 we
conclude that the spectrubPS(A) fits in the cofibrations of spectra

TILP(A) - =79L(p) — LPS(A)
and
T 9 IL(r) > LS(A) — LPS(A).

Now the same line of arguments as for the braid of exact sex@sdi3.46) provides
diagrams (3.47) and (3.48). O

Corollary 6. The groups LPSA) fitin the following exact sequences

-oo = LS(Fy) = LPh(F) — LPS(A) — -+, (3.50)
-+ = LPny1(A) — Lnpig(p) = LPS(A) — -- -, (3.51)

and
<o = Lpygri(m) = LS(A) = LPS(A) — -+, (3.52)

which are realized on the level of spectra.

Proof. These sequences fit in the diagrams of Theorem 6. O

Corollary 7. Let A : Fy — F be an isomorphism of pushout squares. Then we
have isomorphisms

LPS(A) = Lntq(p) = Lpyq(n).

Proof. The result follows immediately from the exact sequencesawbllary 6. [

The next theorem describes relations between the obstrugtoupd PS, and
different structure sets which arise naturally for the rf@dipair with boundaries.

Theorem 8. There exist the following braids of exact sequences

— $n(X,Y;0) — T80 (X, 0X) — Lh_1(m) —
/! N /! N\ /! N\
Sn (X, 0X) LPS_g-1(A)
N /! N /! N /!
— Ln(m) — LS_q-1(A) — Sh—1(X,Y;0) —>

(3.53)
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and
— 8n+1(X,Y;9) - Hn(X, dX; L) —> Ln-1(p) —
7N 7N 7N
T’Sn+1(xa aX) LPnfq(A)
NS NS NS
— Ln(p) — LPS q(A) — (X, Y;0) —,
(3.54)

wherep = 71(8X) andr = w1(X). Diagrams (3.53) and (3.54) are realized on
the level of spectra.

Proof. Consider a homotopy commutative diagram of spectra

L(r) —s S(X, §X) —— TS(X, 9X)

1= i i (3.55)

L(n) — TIHILS(A)) — TIHILPS(X, 9X)

in which the rows follow from definitions and the columns al#ained from the
natural map of the diagram (3.31) to the diagram (3.32). Tdta square of (3.55)
is the pullback and the homotopy long exact sequences afdjiare give the com-
mutative diagram (3.53). The case of the diagram (3.54)mdlai. O

4 Examples

In this section we compute thd®S,-groups and natural maps for several geometric
examples.

Let (Y"1, 8Y) c (X", 8X), n > 4, be a manifold pair with boundaries, where
X is a non-triviall -bundle over the real projective spaE"~* and the submanifold
Y is the restriction of thé-bundle to the projective spat&"—2 ¢ RP"1. The pair
dY C aX coincides withS™~2? c S™1. We have isomorphisms (X") = Zj for
nodd andr1(X") = Z; forneven. The grou@ér is a cyclic group of order 2 with
the trivial homomorphism of orientation ari, is this group with the nontrivial
homomorphism of orientation. In the considered case tharegu(1.2) and (3.12)
are the following squares

1 —- 1
Fe= ) (4.1)
Zi - 73
and
1U1l - 1U1l
Fa=1 | U (4.2)
1 —- 1

All horizontal maps in squares (4.1) and (4.2) are isomapisi

Theorem 9. In the considered cases the natural maps
LPn(F%) = LPS\(Fy — F¥)
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fitting in diagrams (3.46) and (3.48) are isomorphisms foen0, 1, 2, 3 mod 4
Hence we have

LPS\/(Fy — F+) =72,22,72,7 (4.3)
and

LPS\(Fy — F7) = 7, 70, 72, 7o (4.4)
forn =0, 1, 2,3 mod 4 respectively.
Proof. It follows from [10], page 153 that

LSh(Fy) = LNa(1U1— 1) =0

for all n. From this result and the exact sequence (3.50) the firgrstatit of the
theorem follows. We have isomorphisms

LP(F*) = Lnya(il

where
ir:1—> 73
is the natural inclusion andn+1(iﬂ_r) is the relative group of the transfer map (see,

for example, [6], [8] and [9]). Now isomorphisms (4.3) and4(4follow (see, for
example, [9], 83 for the cade™). O
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