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We investigate the classical Alexandroff–Borsuk problem in the category of non-
triangulable manifolds: Given an n-dimensional compact non-triangulable manifold 
Mn and ε > 0, does there exist an ε-map of Mn onto an n-dimensional finite 
polyhedron which induces a homotopy equivalence?
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1. Introduction

In 1928 Alexandroff [1] proved the following important theorem:

Alexandroff Theorem. Every n-dimensional compact metric space X has the following properties:
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• for every ε > 0, X admits an ε-map f : Xn → Pn onto some n-dimensional finite polyhedron Pn; and
• for some μ > 0, X does not admit any μ-map g : Xn → Qk of Xn onto a polyhedron Qk of dimension 

k < n.

Recall that for a metric space X and ε > 0, a continuous map f : X → P is called an ε-map if the 
preimage f−1(p) of every point p ∈ P has diameter < ε.

The condition of compactness in Alexandroff’s theorem above is essential since in 1953 Sitnikov [8,25]
constructed an example of a 2-dimensional subspace of R3 which can be ε-mapped onto a 1-dimensional 
polyhedron for arbitrarily small ε > 0.

In 1954 Borsuk [2] asked whether every compact absolute neighborhood retract (ANR) is homotopy 
equivalent to a finite polyhedron. This difficult question was answered in the affirmative in 1977 by West [27].

It follows by Wall’s obstruction theory [26] that for every n > 2, every n-dimensional compact ANR is 
homotopy equivalent to an n-dimensional polyhedron, having the structure of a finite simplicial complex 
(cf. [27]).

The following natural problem has been opened for a very long time (compare with [17]):

Alexandroff–Borsuk ANR Problem. Given any compact n-dimensional absolute neighborhood retract Xn

and any ε > 0, does there exist an ε-map f : Xn → Pn of Xn onto a finite n-dimensional polyhedron Pn

which is a homotopy equivalence?

In this paper we shall consider the Alexandroff–Borsuk problem for the category of non-triangulable 
manifolds. Since every topological n-manifold is a separable metric locally Euclidean space of dimension n
(cf. [19]), it is a locally contractible finite-dimensional space and therefore it is an ANR (cf. [3]).

It follows by the West Theorem mentioned above that every compact manifold has the homotopy type 
of a finite polyhedron. This fact was first proved in 1969 by Kirby and Siebenmann [18]. So we have the 
following natural special case of the Alexandroff–Borsuk problem:

Alexandroff–Borsuk Manifold Problem. Given a compact n-dimensional manifold Mn and ε > 0, does there 
exist an ε-map of Mn onto a finite n-dimensional polyhedron Pn which is a homotopy equivalence?

Recall that for every n ≥ 4, there exists a closed n-dimensional manifold which is not a polyhedron. Such 
manifolds were first constructed by Freedman [10] in dimension 4, by Galewski and Stern [12] in dimension 5, 
and by Manolescu [20] in dimensions n ≥ 6.

The following is the main result of our paper:

Main Theorem. The Alexandroff–Borsuk Manifold Problem has an affirmative solution for the non-
triangulable closed manifolds of Freedman, Galewski and Stern, and Manolescu.

2. Preliminaries

We shall work with the categories of separable metric spaces, CW complexes and continuous maps. In 
these categories all classical definitions of dimension coincide: dim X = ind X = Ind X (cf. [8]).

We list some definitions and theorems which we shall need in the sequel:

Theorem 2.1. (Cellular Approximation Theorem [28, p. 77]). Let (X, A) and (Y, B) be relative CW complexes 
and let f : (X, A) → (Y, B) be a continuous map. Then f is homotopic (rel A) to a cellular map.
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Recall that a map f : X → Y between CW complexes X and Y is said to be cellular if f(Xn) ⊂ Yn for 
every n. The Simplicial Approximation Theorem is a special case of the Cellular Approximation Theorem, 
cf. [28, p. 76] for details.

Definition 2.2. A manifold M is said to be almost-smooth if it admits a smooth structure in the complement 
M \ {p} of any point p ∈ M .

Theorem 2.3. (Cairns–Whitehead [4,5,16,29]). Every smooth manifold can be given a simplicial structure.

Freedman has proved the following important theorem (cf. [10, Corollary 1.6]):

Theorem 2.4. There is a closed connected almost-smooth 4-manifold |E8| with the intersection matrix E8.

Freedman also established the following surprising fact:

Theorem 2.5. Either |E8| is the first example in any dimension of a manifold which is not homeomorphic 
to a polyhedron, or the 3-dimensional Poincaré conjecture is false.

Since Perel’man has proved the Poincaré conjecture (cf. e.g. [21]), it follows that the 4-manifold |E8|
is not homeomorphic to any polyhedron. However, the complement of any point in |E8| can be given a 
polyhedral structure, since it admits a smooth structure on the complement of any point (cf. [11, Theorem 
on p. 116]) and by the Cairns–Whitehead Theorem 2.3 every smooth manifold is triangulable.

We briefly recall the Kirby–Siebenmann and the Galewski–Stern obstructions and some of their theorems 
(cf. [13,22]).

Definition 2.6. (cf. [22, pp. xii–xiii, 78]). BTOP is the classifying space for stable topological bundles and 
χ is some element of the 4-dimensional cohomology group H4(BTOP; Z2) which is called the universal 
Kirby–Siebenmann class.

The construction of the CW complex BTOP and the element χ is given e.g. in [22, pp. xii–xiii, 78].

Definition 2.7. (cf. e.g. [9, pp. 403–404]). Let Mn be a topological manifold. Then the topological tangent 
bundle τnM of Mn is a neighborhood U of the diagonal Δ ⊂ Mn×Mn such that the projection p1 : U → Mn

is a topological Rn-bundle. Here, p1(x, y) = x.

Let M be a topological manifold, and let f : M → BTOP classify the stable tangent bundle of M . The 
class

f4(χ) ∈ H4(M ;Z2)

is a well-defined invariant of M since f is unique up to homotopy. The Kirby–Siebenmann class Δ(M) of 
M is by definition the element f4(χ).

If U ⊂ M , i : U → M is the inclusion, and fM , fU classify the corresponding stable tangent bundles then 
fM ◦ i � fU and we have i4(Δ(M)) = Δ(U).

Theorem 2.8. (cf. e.g. [22, p. 78]). Let M be a topological manifold. If M admits a PL structure, in particular 
if it admits a smooth structure, then Δ(M) = 0. For dim M ≥ 5 the converse also holds: if Δ(M) = 0, 
then M admits a PL structure.
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Theorem 2.9. (cf. [7,13,23]). Let Mn be a topological manifold, n ≥ 5. Then the Galewski–Stern obstruction 
for a manifold Mn to having a simplicial triangulation is the image

β(Δ(Mn)) ∈ H5(Mn; Ker μ)

of the Kirby–Siebenmann class Δ(Mn) by the Bockstein homomorphism β for the exact sequence of coeffi-
cients:

0 −→ Ker μ −→ θH3
μ−→ Z2 −→ 0.

The homomorphism μ : θH3 → Z2 is the Rokhlin invariant homomorphism of the abelian group θH3 of 
homology cobordism classes of oriented PL homology 3-spheres with the operation of connected sum, cf. 
e.g. [7,23]. For the purposes of our paper it suffices to know that Ker μ is some nontrivial abelian group.

Theorem 2.10. (cf. [15, for n = 3], [9, for n = 4], and [6, for n ≥ 5]). Let α be an open cover of an 
n-manifold M . Then there exists an open cover β of M such that any proper β-map g : M → N onto any 
n-manifold N is homotopic through α-maps to a homeomorphism.

For uniformity we denote the manifolds of Freedman, Galewski and Stern, and Manolescu by M4
F , M5

GS

and M5+n
M , respectively.

3. Proof of the Main Theorem

First consider the manifold M4
F . According to Theorems 2.3 and 2.4, the complement M4

F \{p} of a point 
p ∈ M4

F is a polyhedron. Let ε > 0 be any positive number. Let U ⊂ M4
F be an open topological ball in M4

F

with center at p and with diameter less than ε. Consider a triangulation T of M4
F \ {p} and let K be the 

polyhedron which is the union of all simplices of T which intersect with M4
F \U and let L be the compactum 

which is the union of all the remaining simplices in U and the point p.
Obviously, L is a locally contractible 4-dimensional space and therefore by the Borsuk theorem [3] it is a 

compact ANR. By the above mentioned theorems of West and Wall it follows that L is homotopy equivalent 
to a finite 4-dimensional polyhedron, call it B. We have a homotopy equivalence f : L → B. Consider the 
closed star st(f(p)) of the point f(p) in the finite polyhedron B, that is the union of all simplices of B
containing the point f(p). This is a closed neighborhood of the point p. Consider the preimage of st(f(p)). 
We get a closed neighborhood of the point p in L.

Consider the second barycentric subdivision of st(f(p)) and the closed star of the point f(p) in it. Call 
it st2(f(p)). Obviously,

f−1(st2(f(p))) ⊂ Int f−1(st(f(p))).

Let d be the minimal distance between the points of the boundary ∂(f−1(st(f(p)))) and the points of 
compactum f−1(st2(f(p))). Clearly, d > 0.

Consider small triangulation of T such that the diameters of all of its simplices are less than d and let Q
be the union of all simplices of this triangulation which intersect f−1(st2(f(p))) and the point p. We get a 
relative CW complex (L, Q) and the mapping

f : (L,Q) → (B, st(f(p))).

By the Cellular Approximation Theorem 2.1, the map f is homotopy equivalent to a map g such that 
its restriction to L ∩K is a simplicial map (in our case the relative CW complexes are obviously relative 
simplicial complexes).
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Since M4
F and L are ANR’s, the pair (M4

F , L) has the homotopy extension property with respect to any 
space [14, p. 120], [28]. Therefore M4

F is homotopy equivalent to the quotient space M4
F ∪g B, cf. [28, p. 26, 

Corollary (5.12)].
The space M4

F ∪gB is the union of two finite polyhedra intersection of which is g(L ∩K), a subpolyhedron 
of both of these polyhedra and therefore M4

F ∪g B is a finite polyhedron. Obviously, the quotient map of 
M4

F onto M4
F ∪g B is an ε-map.

Consider now the Galewski–Stern manifold M5
GS. The obstruction to triangulability of any manifold Mn

for n ≥ 5 is the obstruction

β(Δ)(Mn) ∈ H5(Mn; Ker μ)

(cf. Theorem 2.9). Manolescu [20] has showed that β(Δ)(M5
GS) is nontrivial and therefore the manifold 

M5
GS is non-triangulable.
However, for any connected closed 5-dimensional manifold,

H5(M5 \ {p}; Ker μ) = 0

and therefore the Galewski–Stern obstruction β(Δ)(M5
GS \ {p}) is trivial and M5

GS \ {p} is an infinite 
polyhedron. Using the arguments similar to those used in the proof of the theorem for the Freedman 
manifold it follows that for every ε > 0 there exists an ε-map of M5

GS onto a 5-dimensional polyhedron P 5

which is a homotopy equivalence.
The Manolescu non-triangulable manifold M5+n

M is the product of M5
GS with the torus Tn. Since M5

GS

admits an ε-map onto P 5 which is a homotopy equivalence for an arbitrarily small ε > 0, it follows that 
obviously,

M5+n
M = M5

GS × Tn

also admits an ε-map which is a homotopy equivalence onto P 5 × Tn for arbitrarily small ε > 0.

4. Some complementary results and remarks

Theorem 4.1. There do not exist any non-triangulable almost-smooth manifolds Mn for any n > 4.

Proof. Since Mn is non-triangulable it does not have a PL structure and therefore the Kirby–Siebenmann 
obstruction

Δ(Mn) ∈ H4(Mn;Z2)

is nonzero, by Theorem 2.8. It follows from the exact sequence of the pair (Mn, Mn \ {p}):

0 = H4(Mn,Mn \ {p};Z2) → H4(Mn;Z2) → H4(Mn \ {p};Z2)

that Δ(Mn \ {p}) is nonzero for n > 4. Therefore Mn \ {p} does not have a PL structure and is thus not 
smooth. �
Theorem 4.2. A non-triangulable connected manifold of dimension n > 4 has an infinite simplicial complex 
structure in the complement of a point if and only if n = 5.
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Proof. The obstruction class β(Δ)(M \ {p}) is obtained as the image of β(Δ)(M) by the restriction

H5(M ; Ker μ) −→ H5(M \ {p}; Ker μ).

When n = 5, we have

H5(M \ {p}; Ker μ) = 0

since M is a connected manifold, hence the obstruction vanishes. When n > 5, we see that by the exact 
sequence of the pair (M, M \ {p}) we get

0 = H5(M,M \ {p}; Ker μ) → H5(M ; Ker μ) → H5(M \ {p}; Ker μ).

The restriction is injective, so the image of β(Δ)(M) is non-zero and M \{p} is non-triangulable as simplicial 
complex, by Theorem 2.9. �
Remark 4.3. For non-triangulable manifolds there do not exist ε-maps onto a triangulable manifold for small 
enough ε > 0. This follows from deep results of Chapman and Ferry, Ferry and Weinberger, and Jakobsche
(cf. Theorem 2.10).

5. Epilogue

The non-triangulable closed 4-manifolds of Freedman [10,24], 5-manifolds of Galewski and Stern [7,12], 
and n-manifolds of Manolescu for n ≥ 6 [20, p. 148] have nice geometric descriptions. All of them are homo-
topy equivalent to polyhedra of the corresponding dimension. We have polyhedral homotopy representatives 
PH4

F , PH5
GS , PH5+n

M of the above mentioned non-triangulable manifolds.

Problem 5.1. Find a geometric description of the polyhedra PH4
F , PH5

GS and PH5+n
M .

The Alexandroff–Borsuk problem is solved for the special class of non-triangulable manifolds and is still 
open for general non-triangulable manifolds. The following problems seem to be of interest:

Problem 5.2. Let Mn be any non-triangulable manifold. Does there exist any polyhedron P embeddable in 
Mn, such that Mn \ P is also a polyhedron?

According to our Main Theorem, for every positive number ε and for the manifolds of Freedman, Galewski 
and Stern, and Manolescu there exist ε-maps of these manifolds onto some polyhedra PH4

F , PH5
GS , PH5+n

M , 
respectively. The following version of the Alexandroff–Borsuk Manifold Problem remains open:

Problem 5.3. Does there exist for every compact n-dimensional manifold Mn, a finite n-dimensional poly-
hedron Pn such that for an arbitrarily small ε > 0 there exists an ε-map f : Mn → Pn which is a homotopy 
equivalence?

The answer for the corresponding version of Alexandroff–Borsuk ANR Problem is negative, even for 
1-dimensional compact absolute retracts (AR), i.e. for the dendrites.
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