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1. Introduction

This paper was motivated by a large number of applications of the eigenvalues problem for the Laplace-

Beltrami operator in the hyperbolic framework and in particular, by recent important work [34,38,39]. We

study the following elliptic problem

— Agu = Xa(o)f(u) onBY, uwe H"2BY),

(1.1)

on the Poincaré ball model BY. Here, Ay is the Laplace-Beltrami operator, A > 0 is a real parameter,
a € LY(BYN)N L>(BY) is a nonnegative nontrivial radially symmetric potential, N >3, and f : R — R is

a continuous function satisfying the following growth condition
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af = sup Lﬁ”_ < 00, (1.2)
ek L+ o]
where ¢ € [2,2*] and 2* = 2N/(N — 2) denotes the critical Sobolev exponent.

Problem (1.1) is an important generalization of the most widely investigated elliptic problems with
subcritical nonlinearities which arise naturally in various areas of mathematics. For instance, an important
incentive to study Kirchhoff-type problems comes from recent publications [1,2,18,19,31-33,37,44] in which
Kirchhoff equations on BY have been proposed as an interesting open problem (see also [21-24,35] for
related topics).

Since BY is an important model of a Hadamard manifold (i.e. a complete, simply connected Riemannian
manifold with nonpositive sectional curvature), our approach can be used (as we plan to do in our forth-
coming paper) to study existence of multiple solutions of elliptic problems on Hadamard manifolds in the
presence of a compact topological group action.

Given o € BY, let T, (B") denote the tangent space and (-, -), the related inner product. We investigate
weak solutions of problem (1.1), i.e. for functions u € H?(BY) such that for every ¢ € H“?(B"), the
following is satisfied

/ (Viru(@), V() du = A / a(0) f (u(0)) (),
BN

BN

20\ 2
where dy is for the Riemannian volume element on BV, and Vg = (%) V is the covariant gradient

(here, | - | and V denote the Euclidean distance and the gradient in RY | respectively). Let SO(N) be the
special orthogonal group, N > 3.
We are now ready to state the main result of this paper.

Theorem 1.1. Suppose that f : R — R is a continuous function such that

(a) f satisfies the growth condition (1.2) for some q € (2,2%),
(b) f satisfies the asymptotic condition
¢
/f(s)ds
0

li —_— = 1.3
Jim T +oo, (1.3)

(c) a € LYBN)NL>(BN)\{0} is a nonnegative radially symmetric map with respect to the origin oo € BY.

Then there exists \* > 0 such that, for every A € (0,\*), problem (1.1) admits a SO(N)—-invariant weak
solution uy € HY2(BY) whose norm converges to zero as A goes to zero.

We shall find solutions of problem (1.1) as critical points of the following energy functional

u(o)
) = 5 / 1V sruo) Py — A / a(o) / f(t)dt | dp (1.4)
BN BN 0

defined on the Sobolev space H'2(B*V). In fact, we shall prove Theorem 1.1 by using variational methods (see
[12] as a general reference for this topic) by means of a local minimum result for differentiable functionals,
and the Palais principle of symmetric criticality (see Theorems 2.1 and 3.2 below, respectively).
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Remark 1.1. Note that condition (1.3) in Theorem 1.1 has been used before - in order to study existence

and multiplicity results for certain classes of elliptic problems on bounded domains (see e.g., [3-10], [26-28],
and [40]).

The noncompact hyperbolic setting presents additional difficulties with respect to the cited work and
appropriate geometric and algebraic tools are needed for the proof. A key tool is a detailed analysis of the
energy level of Jy on the Sobolev space

HSO(N)(]BN {ue HY2BY) | g ®so(n) u = u, for every g € SO(N)}
of SO(N)—invariant functions (see Section 3).

A simple prototype of a function in HSb(N) (BY), depending on parameters 0 < r < p, defined by setting
for every o € BY,

1 1f0€A1/2T
: N
w,lj,/f(a)— 0 y it o € BY \ 47 (1.5)
2 1+ o
;(r—‘log<1_|a|>—p‘> if o € A2 \Al/Qr

has the support contained in the annuls A? of BV (see [34] for more details).

We conclude the introduction by describing the structure of the paper. In Section 2 we shall collect the
necessary notations, definitions and facts. In Section 3 we shall present a compactness argument, based on
the action of a suitable subgroup of the group of isometries of BY. In Section 4 we shall prove the main
result (Theorem 1.1). Finally, in Section 5 we shall give an example.

Some of the abstract tools used in this paper can be found in [42]. For eigenvalue problems on the
hyperbolic space we refer the reader to [11,20,30,35,45,48,49].

2. The abstract framework
Let BY = {0 = (21,22,...,75) € RY | |o| < 1}, be equipped by the Riemannian metric g;; =
4(1 — |o|?)726;;, where o € BY,i,j € {1,...,N}, and | - | and §;; denote the Euclidean distance and the

Kronecker delta symbol, respectively. For every i,7 € {1,...,N}, let g = (g;;)~" and g = det(g;;). We
locally define the Laplace—Beltrami operator Ay by

N N9
_ o —1/2 1/2 ij
Ay =g/ E o (g E gj—axj).
i=1 j=1

The following is a more convenient form

N N
1—IUI N =2)(1 —o]*) 9
A 1o
when we consider the Riemannian volume element in BY
dp = Jegdx =2V (1 — |o]?) N dx, (2.1)

where dx denotes the Lebesgue measure on RY. Finally, let
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lo|

dir(0) = du(o, 0) :2/ lft 1og<1+|"|) (2.2)
0

2 1—|o|

be the geodesic distance of ¢ € BY from the origin o9 € BY. Let (o, #) denote the polar geodesic coordinates
of a point in BV \ {0}. We see that ds? = dp? + (sinh g)2df, on BV \ {0}, and

02 0 Ag
— N -1 ho—
902 + ( ) coth o— +

Ag = e
" do  (sinhp)?’

where Ay the Laplace-Beltrami operator on the sphere S¥~! ¢ R¥. Invoking (2.2), we define the distance
on BY by

2|0’2 —0'1|2
(1= lo1?)(1 = |o2f?)

dp(o1,02) = Arccosh (1 + ) , for every 1,09 € BN,

For every r > 0, we denote by B(r) = {oc € BY | |o| < r} (resp. By(r) = {0 € BY | dy(o) < 7})
the Euclidean (resp. geodesic) ball of radius r, at the origin g € BY. It follows by (2.2), that for every
r € (0,1), B(r) = By (log (%)) See [45] for additional comments and related facts.

For any o € RY | let T,,(BY) be the tangent space at ¢ € BY, equipped by the inner product (-,-)_ and
let T(BY) =, g~ T(B") be the tangent bundle. Whenever possible, given X,Y € T,(BY), we write | X|
and (X,Y) instead of | X|, and ¢,(X,Y) = (X,Y),, respectively.

Recall that C5°(B?Y) denotes the space of real-valued smooth functions compactly supported on BY. Let

lu| = / |V gu(o)|2du, for every u € C5°(BY), (2.3)
BN

where dp denotes the Riemannian measure on BY from (2.1) and we get the following

VHZ<%)QV and VHu(U)|:<(1%|02)>2 (Vu(o), Vu(o)).

Then H2(BY) is the completion of C§°(B”) with respect to the norm (2.3) and it is a Hilbert space with
the inner product

(u,v) = / (Vyu(o), Vyv(o))du, forevery u,v e HM?(BY). (2.4)
BN

We need to find critical points of the functional Jy from (1.4) so we shall invoke the principle of symmetric
criticality, together with the following critical point theorem of Ricceri [46] which we state in a form more
suitable for our purpose.

Theorem 2.1. Let X be a reflexive real Banach space and ®,¥ : X — R Gateaux differentiable functionals
such that ® is strongly continuous, sequentially weakly lower semicontinuous and coercive, whereas ¥ 1is
sequentially weakly upper semicontinuous. Given r > infx ®, let

- . sup{¥(v) |v € @ ((—o0,7))} — ¥(u)
w(r) = ueéfll(rtf;oo,r)) r—®(u) '
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Then for everyr > infx ® and A € (O, ﬁ), the restriction of the functional Jy = ® —A¥ on ®~1((—o0,r))

admits a global minimum which is a critical point (local minimum) of Jy in X.
Remark 2.1. Theorem 2.1 is a direct consequence of [9, Theorem 2.1] (see also [4,5] for related topics).

Remark 2.2. Problem (1.1) is set on the entire noncompact space BY. Therefore we shall take a group
theoretical approach in Section 3, in order to identify those symmetric subspaces of H'2(B") on which
compactness of the embedding into L”(B") can be regained.

3. SO(NN)-invariant functions

Consider the special orthogonal group SO(N), N > 3. Let - : SO(N) x BY — B" be the natural action
of SO(N) on BY. The action ®go(n) : SO(N) x H-2(BY) — HV2(BY) of a subgroup SO(N) € .% on
HY2(BY) is given by

9®sonyu(o) =u(g ' o), forae oeB", (3.1)
for every g € SO(N) and v € HY2(B"). Denote by
HL2 (BN) = {ue HY2BY) | g ®so(n) u = u, for every g € SO(N)}

SO(N)

the subspace of SO(N)-invariant functions of H2?(BY). By using a recent embedding theorem of
Skrzypczak and Tintarev [47, Theorem 1.3 and Proposition 3.1], the following compactness argument can
be proved (see also [17,29]).

Theorem 3.1. (See [47].) For every v € (2,2%), the embedding Hé’é(N)(BN) — LY(BY) is compact.
Next, we recall the Palais principle of symmetric criticality. The group (SO(N), x) acts continuously on

the Hilbert space H>?(B") by (7,u) — 7 ®g0o(n) u from SO(N) x H?(BY) to H*?(B"), if this map itself
is continuous on SO(N) x HY2(BY) and it has the following properties

(i1) for every 7 € SO(N), u — T ®g0(n) u is linear;
(i) for every 11,79 € SO(N) and u € HL2(BY),

(11 % T2) ®gon) U = T1 ®so(n) (T2 Bgon) u); and
(i3) for every u € HV2(BY),
idso(n) ®so(N) U = U,
where idgo(ny € SO(N) denotes the identity element of SO(NV).
Define
Fixgom (H"?(BY)) = {u € H"?(BN) | 7 ®s0(n) u = u, for every 7 € SO(N)}

and recall that the functional J : H12(BY) — R is called SO(N)-invariant if

J (T ®somvyu) = J(u), forevery u e HY2(BY).

The following result holds.
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Theorem 3.2. (See [41].) Let H2(BY) be the Sobolev space associated to the Poincaré model BY, SO(N)
the special orthogonal group acting continuously on H2(B™) by the map

®so(n) : SO(N) x H?(BYN) — H"*(BY),

and J : HY2(BY) = R a SO(N)-invariant C* —function.
If u € Fixgon) (HY2(BN)) is a critical point of T Fixso, (HL-2(BN))» then u € HY2(BN) is also a critical
point of J.

For details and comments we refer to [13, Section 5] and [14]. See also [34,36,43] for related topics and
results.

4. Proof of the main theorem

Consider the functional Jy(u) = ®(u) — A¥[so(n)(u), u € Hé’OQ(N)(BN), where

D(u) :%/|VHu(U)|2d,u and \I/(u):/a(U)F(u(o))du.
BN BN

We shall apply Theorem 2.1 to the energy functional J\ and use some ideas from [34,39]. On the basis of
the preliminaries collected in Sections 2 and 3, the existence of one nontrivial SO(N)-symmetric solution
of problem (1.1) follows by the Palais criticality principle (Theorem 3.2).

The space Hé‘g(N) (BY) admits a Hilbert structure. By [25], the functionals ® and \I}|H§;’02(N)(BN) satisfy
all the regularity assumptions of Theorem 2.1. More precisely, the functional ® is (strongly) continuous,
coercive in the symmetric space Hég(N)(IB%N) and inf{®(u) |u € Hé’é(N)(BN)} =0.

Since for every v € [2,2*], the Sobolev embedding H'2(B) — L”(BY) is continuous (but noncompact
- see [25]), we shall make use also of the positive constant

1
2

o=sw{ [ o) | [ Wauo)Pdu | ue #2 @)\ o},

Set h(w) = w(gv2||all, + 2q/20371||a|\00wq71)71, for every w > 0, and define

h 0
A= gmax{h(w) |w > }, where p = _9 (4.1)
Qafcq g—1

Take 0 < A < A*. By (4.1), we have

A< N (w) = , for some @ > 0. (4.2)
Let © : (0,00) — [0, 00) be the real function defined by

1
O(r) = —sup{¥| 1z @) (1) | u € @7 (=00,1)}, for every 1 >0,

SO(N)

Then condition (1.2) gives
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U(u) < af/ a(o)|u(o |d,u+ — / o)|%dp, for every wu € Héé(N)(BN),
so if ®(u) < r, then

Vau(o)|?du < 2r, for every u € HY? BY). 4.3
SO(N)

BN

An application of (4.3) and Theorem 3.1 yields

cd—1
/ a(o)F(u(o))dp < aje, <|a||p\/§+ E |a||oo(2r)q/2> , for every u € Hgg ) (BY), ®(u) <r.
BN
Consequently,
1 g’ 2
SUp{(Wlgrs ()| € @7 (=00} < ey (ol V2T + o (20)2 ).
Hence
9 24/204-1
O(r) < ayeg ||a||p\/j+ 7||0z|| r?/2=1) 0 for every 7 > 0. (4.4)
r q

Taking r = @?, we get

-2 llexllp 2q/26371 —q—2
O(w?) < ayey V2 S + . [lev]] coto? . (4.5)
On the other hand,
L . sup{‘l/lgggm ]BN)(U) |ue® ! ((—o0,m))} — ‘I’|HSO<N>(B )( u) <052
@) = ued—1((=00.3?)) r—®(u) = 6@,

since 0 € ®71((—o00,w?)) and ®(0) = 0. By virtue of (4.2) and (4.5), we have

(4.6)

>| =

P(@*) < O(@?) <

hence \ € (0,1/p(w0?)). Consequently, by Theorem 2.1, there exists us N) ¢ ®~1((—00,w?)) such that
SO(N SO(N

O is a global minimum of Jy on the sublevel O~1((—00,w?)).

Moreover, uf
Next, we show that solution uSO(N) is not the trivial (identically zero) function. If f(0) # 0, then it
easily follows that u/\O(N) #£0in H.? SO(N) (BY), since the trivial function does not solve problem (1.1).

So let us consider the case when f(0) = 0 and fix A € (0, \*(w)) for some w > 0. Let u/\o( ) be such that

Ta@3O™) < Ja(w), - for every € Hgp ) (BY) such that $(u) < &° 4.7
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and

o(uiM) < 2?2, (4.8)

and that ufO(N) is a critical point of Jy in Hé’f)(N) (BM).
Applying Theorem 1.1, the energy Jy defined in (1.4) needs to be invariant with respect to the special
orthogonal group SO(N). To show this, fix u € HY2(BY) and g € SO(N). Since g € SO(N) is an isometry,

it follows by (3.1) that
V(g ®somy u)(o) = Dg,-1.,Vuu(g~ o), forae. o€ BY. (4.9)

1

If z=¢97" -0, then

||9®SO(N)UH2=/|VH(9®SO(N) u)(0)|2dp(o)
- / Vaulg™ o) s pdplo) = [lull, (4.10)

where we have used (4.9). On the other hand, since a € L*(BY) N L*(BY) is radially symmetric respect to
the origin, it follows that

(9®s0(n)yu) (o) u(g’lﬂ)
/ (o) / h(t)dt | du(o) = / (o) / h(t)dt | du(o) (4.11)
BN 0 BN 0
u(z)
= [ a(z) h(t)dt | du(z).
L\

By (4.10) and (4.11), we have Jx(9 ®so(n)©) = Jx(u), which proves the SO(N) invariance of the functional

I
By Theorem 3.2, it is clear that ufO(N) weakly solves problem (1.1). Proving that ufO(N) Z 0 in

Hé’é(N)(BN), we show the existence of a sequence {wj}jEN in Hé’OQ(N)(BN) such that

lim sup : =00. (4.12)

By (1.3), there exists {t;};en C (0,400) such that ¢; = 07 when j — 400, and

F(t;
lim (23) = +o0. (4.13)
J——+oo tj

Therefore for every M > 0 and all sufficiently large 7,
F(t;) > Mt;. (4.14)

Now, a € L>=(BY) \ {0} is nonnegative in BY. Hence there are real numbers p > r > 0 and ag > 0 such
that
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essinf, c gra(0) > a9 > 0. (4.15)

For every 0 < a < b, set

1
AZ_{JGBN|b—a<log<l+|U:> <a+b}.
— |0

Define wy/,’ (0) € H-2(BY) by

1 if o 6A1/27~
: N
wh2(0) =1 ° if o € BT\ A7 (4.16)
2 1+ o]
r(r’log<1_|a|>p‘> ifo € A \Al/2r’

for every o € BV.

Since the group SO(N) is a compact connected subgroup of the isometry group Isom,(B”) such that
FixSO(N)(BN) = {00}, it follows that w;/f € HY2(BY), given in (4.16), belongs to Héé(N)(BN). Therefore
Supp(wp,«) C A?(0p), ||w,1,,/T2||OO <1, and wp,/,?( ) =1, for every o € AI/QT(O'()).

Remark 4.1. The test functions used here were introduced in [35], following [17]. We note that test functions
introduced in [3,8] are different. We also emphasize that the different geometrical structure used along the

proof is crucial in order to recover the SO(NN) invariance of the test functions.

Define w; = tjwé,/f for any j € N. Taking into account that w;/TQ € Hég(N)(BN), it is easily seen that

Héé(N) (BY), for every j € N. Furthermore, exploiting the properties of w;,/f, by (4.14), it follows
that.

(o) F(w; (x)) dp + / (o) F(w;(0)) du
Ulgre o @m(wi)  af, ANAL,,

@ (w;) B ®(wj)

[ a@rednr [ alo)rule)d

Af/zr AL \A1/27‘

- ] (4.17)

Mu(afp B+ [ Pl da

ADNAS .

> 2aq

for sufficiently large j.
172 )
IR

Assertion (4.12) now follows by (4.17).
Now

/|Vij \du—tQ /|VHw1/2 VWdp — 0, as j — 400,

so ||w;|| < V2@, for sufficiently large j. Hence

w; € 2 ((—o00,w?)), (4.18)
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provided that j is large enough. Moreover, by (4.12),

wj(o)
) =5 [Waws@Pdu=x [ato)| [ | du<o. (4.19)
BN BN 0

for sufficiently large 57 and A > 0.
Since the restriction of Jy to ®~!((—oc0,&?)) has uy?™) as a global minimum, it follows by (4.18) and
(4.19) that

wj(o)
73 <5 [ Wnws@)Pdu—x [ato) | [ s au< 70, (4.20)
BN BN 0

S0 ufO(N) #0in H;JOQ(N)(BN) as asserted.

Therefore ufO(N) is a nontrivial weak solution of problem (1.1). The arbitrariness of A implies that

ufO(N) # 0, for every A € (0, \*).

Finally, we show that )\limJr ||u§O(N)|| = 0. To this end, consider A € (0, \*(@)) for some w > 0. Taking
0
into account that @(ufo(m) < @?, it follows that @(ufo(m) = %HufO(N)HQ <@? e, ||u§O(N)|| < V2.

The growth condition (1.2) yields

7)) < o ( [ @@ @)dn+ [ alo)fus” (U)I"du>

BN BN

SO(N SO0(N
<oy (nanpnw g + oo 63 )||g>
< cqorf (\/§||a|pw + 2‘1/203_1”04000.;‘1) =M;.
Since ufO(N) is a critical point of Jy, it follows that <j>’\(u§O(N)), ) =0, for every ¢ € Hé’é(N) (BY) and
X € (0, A*(@)). Hence, (J4(uy?™), w3y = 0 and thus
(@ (M), ufOMy = AW (WO for every A € (0, A*(@)).

The relations above now ensure that

0 < [lus O™ )2 = (@ (M), My = AW (u3ON)) < AM,, for every A € (0, M (@)).
Hence Alir& ||u§O(N)H = 0, as was asserted. The proof of Theorem 1.1 is now complete. O

—

Remark 4.2. Profile decomposition methods can be useful in order to study similar problems when a lack of
compactness occurs (see, among others, the recent papers [15,16]). A further and more general investigation
of this topic will be included in the forthcoming book [37].

Remark 4.3. The referee has observed that the importance of the solution as a local minimum is in that we
can obtain in addition a second solution, and suggested as a further study, to attempt to apply the result
contained in [7] to obtain two nonzero solutions for this type of problems.
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5. An example

We conclude the paper by exhibiting the following model equation which illustrates how our main result
can be applied.

Example 5.1. For any 1 < r < 2, consider the following problem on B*

1—|of

4
5 ) lu|""?u, uwe HY(B). (5.1)

—AHUZ/\<

By Theorem 1.1, there exists A* > 0 such that for every A € (0, )\’;O(N)), problem (5.1) admits at least one

nontrivial SO(N)-symmetric weak solution ufO(N) € H%2(B*) such that limy_,o+ ||ufo(N)|| =0.
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