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1. — Hyperbolic 3-manifolds.

This survey paper covers various areas of topology of 3-manifolds
with emphasis on those problems which were studied by the authors and
their coauthors in recent years. We present key results and state several
open problems on the following subjects: topology and geometry of
hyperbolic 3-manifolds, manifolds with cyclic symmetry, manifolds obtai-
ned by Dehn surgery and knot spaces.

Let H? be the three-dimensional Lobachevsky (or, hyperbolic) space,
and let I' < Isom (H?) be a discrete group of isometries acting without fi-
xed points. The quotient space M3 = H3/I is said to be a hyperbolic 3-
manifold (or in other terminology, a Clifford-Klein space-form). The
question about the existence of hyperbolic Clifford-Klein space-forms
was formulated in 1880 by Killing. The first example of a noncompact
nonorientable hyperbolic 3-manifold was obtained in 1912 by Gieseking
(see [42], pp. 153-156), from the ideal (with all vertices at infinity) regu-
lar tetrahedron in H® with all dihedral angles equal to /3. The first
example of a compact orientable hyperbolic 3-manifold was obtained in
1931 by Lébell [40] by gluing eight copies of the right-angled polyhedron
in H® with 14 faces, similar to the dodecahedron (it has hexagonal top
and bottom and twelve pentagons on the lateral surface; see Figure
1.1).

Further examples were obtained by Seifert and Weber [53], Best [5],
and others. Recall that by the Mostow Rigidity theorem (see for example
[4], Ch. C) if M, and M , are finite volume complete connected hyperbolic
n-manifolds, 7 = 8, and if there is a group isomorphism from 7,(M,) to
71(M ), then there exists an isometry from M, to M ;. Hence the hyper-
bolic volume is a good topological invariant for hyperbolic 3-manifolds.

Figure 1.1. - The Léebell polyhedron.

K




(3] RECENT RESULTS ON TOPOLOGY OF THREE-MANIFOLDS 33

In the paper, we will always consider hyperbolic manifolds of finite
volume.

We recall that by the Gauss—Bonnet formula, the volume of an even-
dimensional manifold is given by

1
voly,, (M2™) = (-1)™ Evolz,,,(szm) (M),

Therefore, the set of volumes of hyperbolic manifolds of a given even di-
mension is discrete. Some calculations of volumes of hyperbolic mani-
folds in higher dimensions were done by Kellerhals in [35].

The structure of the set of volumes of hyperbolic 3-manifolds is de-
scribed by the Thurston-Jergensen theorem (see, for example, [4], Ch.
E, and [28]):

THEOREM 1.1. The set of volumes of all hyperbolic 3-manifolds (with
finite volume) is a closed non-discrete well-ordered subset of the real li-
ne, whose ordinal type is w®. Moreover, the function M —vol (M) 1is fi-
nite-to-one, ie., there are only finitely many distinct hyperbolic 3-ma-
nifolds with a given volume.

In particular, the following questions arise in a natural way:

1.1) It is known that for any given value v, the set of manifolds
whose volume equals v, is finite. Can this finite number be arbitrarily
large? y

1.2) Volumes of noncompact manifolds correspond to limit ordi-
nals. It was asked in [56] whether there exist a compact and a noncom-
* pact manifold with the same volume?

1.3) It follows from Theorem 1.1 that there exists a hyperbolic 3-
manifold with the smallest volume. What are the smallest manifold and
the initial part of the set of volumes of hyperbolic 3-manifolds?

) 1.4) As seen above, hyperbolic 3-manifolds can be ordered by their
volumes. Is it possible to estimate the volume of a hyperbolic 3-manifold
and the order of its isometry group in terms of its Heegaard ge-
nus?

Hereafter, we will discuss answers to the questions above.

First, we present some properties of volumes and, in particular, some
results on the number of hyperbolic 3-manifolds of the same volu-
me.
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For the case of noncompact manifolds, the affirmative answer to que-
stion 1.1 was given by Wielenberg [61] and Adams [1]: for any natural
number N there exist at least N pairwise nonhomeomorphic noncompact
hyperbolic 3-manifolds with equal volumes. For the case of compact ma-
nifolds, the affirmative answer to question 1.1 was also given, by exam-
ples constructed by Apanasov and Gutsul {3], by Zimmermann [62], and
by one of the authors [58]: for any natural number N there exist at least
N pairwise nonhomeomorphic compact hyperbolic 3-manifolds with
equal volumes.

We now give the sketch of examples from [58]. The construction is
based on the following four-coloring approach [57]. Let R be a right-an-
gled polyhedron in H2. Then each 4-coloring of its faces defines an orien-
table hyperbolic 3-manifold constructed from eight copies of R. Each 5-,
6-, or 7-coloring defines a nonorientable manifold. In [57] infinite series
of compact orientable and compact nonorientable manifolds £,, n=5,
were constructed. These manifolds are generalizations of the first Lobell
example constructed in 1931. Each of manifolds £, is obtained from ei-
ght copies of a right-angled (27 + 2)-hedron in H® with n-gonal top and
bottom and 2n pentagons on the lateral surface similar to the polyhe-
dron shown in Figure 1.1. The manifolds .2, are referred to as Lobell ma-
nifolds. The Lobell example, constructed in [40], corresponds to case
n=6.

The Lébell manifolds give examples which answer in affirmative que-
stion 1.1. More precisely, we have the following result [58].

THEOREM 1.2. For any natural number N, there exists a right-
angle polyhedron in the hyperbolic 3-space H® which is the fundamen-
tal polyhedron for at least N pairwise nonhomeomorphic closed hyper-
bolic 3-manifolds.

Recall that volumes of hyperbolic polyhedra and hyperbolic mani-
folds can be expressed in terms of the Lobachevsky function:

Az) = —f1n|2sinz;|d¢.
0

For example, let T(a, 8, y) be an ideal (with all vertices at infinity) te-
trahedron with dihedral angles a, §, and y such that a + 8+ y = 7 (see
Figure 1.2).

Then we have

vol T(a, B, y) = A(a) + A(B) + A(y).
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Figure 1.2. - The tetrahedron T(a, 8, 7).

The maximal possible volume of a tetrahedron in H? is
vo=vol T(n/3, 7/3, 7/3) =3A(n/3) =1. 014 ...

For practical calculations, it is convenient to use the following
series

B, (2x)*"

Alx)y=z|1 -2z + 2, —8 —
(@) 22| Z2n(2n+1)
which converges for |x| <a and where B, is the m-th Bernoulli
number.

The volumes of Lobell manifolds were calculated in [59].

THEOREM 1.3. For any natural number N, there exists n such that
at least N pairwise nonhomeomorphic closed hyperbolic 3-manifolds
have the volume:

voln=4n(2A(C)+A(§+ %)+A(C— %)—A(ZC— g))

where { = — — arccos

SIE]

2 cos (n/n) )

2. — Manifolds with cyclic symmetry.

Let F, be the free group on free generators xg, ..., %, ;. Let
6: F,— F, be the automorphism defined by 6(x;) =« ., (where the in-
dices are taken modn).
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For any reduced word w = w(zq, ..., £,_;) in F,, let us consider the
factor group G ,(w) = F /R, where R is the normal closure in F',, of the
set

{w, 6(w), ..., 0" '(w)}.

A group G is said to have a cyclic presentation if G is isomorphic to
G, (w) for some w and n. Of course, 6 induces an automorphism of G, (w)
which determines an action of the cyclic group Z,=(6:6"=1) on
G, (w).

The split extension group of G ,(w) by Z, will be denoted by H , (v).
It has a 2-generator presentation of the following form

H,(v)=(0,x:0"=1, v(8, x)=1),
where
w0, x) =w(x, 0 'z, ..., 0 "~ Dgen1),

The polynomial associated with G ,(w) is defined to be
n-1 R
fw(t) = .Zoaitt,
where a; is the exponent sum of x; in w.

ExaMpLE 2.1. Sieradski groups [54] are defined by the following
cyclic presentations

Sn)=(xg, ..., Xp_1: %;%;42=2;, 1 (indices modn)).

The defining word is w = 2,22, and the polynomial associated with
this presentation is f,,(t) =1 — ¢ + ¢2. So the split extension group is pre-
sented by :

H,(w)={6,x:6"=1, 20 2x0x '60=1).
Setting x = 611 yields
H,w)=(6,2:6"=1, 616074 '0A=1)
=(0,A:0"=1, 6A0=2A1601).

Since A4 is conjugate with 6 (use the second relation), it follows that
A" =1. Thus we have

H,v)=<6,1:0"=A"=1, 0i6=2104).
We remark that the group presented by < 8, A : 646 = 161) is the funda-
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mental group of the trefoil knot, and the generator 6 represents a meri-
dian of it. Hence H ,(v) is the fundamental group of the orbifold @,(3;)
whose underlying space is the standard 3-sphere S3, and whose singular
set is the trefoil knot 3; with branching index n. Then the Sieradski
group S(n) is the fundamental group of the n-fold cyclic branched cove-
ring of the trefoil knot (see [13] and [14] for more details). Finally, the
polynomial associated with S(n) is f,(t) =1—¢+t%, which coincides
with the Alexander polynomial of the trefoil knot.
This example suggests in a natural way the following questions:

2.1) Does G, (w) (resp. H,(v)) correspond to the fundamental
group of some closed orientable 3-manifold (resp. 3-orbifold) M, (w) (re-
sp. O,(K), K being a knot or a link)?

2.2) Which of the manifolds M ,(w) admits a hyperbolic structure?
In this case, determine the Heegaard genus, the volume, and the isome-
try group of M ,(w);

2.3) Are the manifolds M ,(w) homeomorphic to the cyclic bran-
ched coverings of some (hyperbolic) knots or links? In the first case,
does f,,(¢) coincide (up to the sign) with the Alexander polynomial of the
knot?

These questions have nice solutions for the cyclic branched coverings
of 2-bridge knots [19] [20] (here we are principally interested in hyper-
bolic case, and refer to [13] for 2-bridge torus knots). A 2-bridge knot is
determined by a pair of coprime integers (a, ) satisfying 0 < < a, and
a odd. Following [7], let us denote by a/f the 2-bridge knot determined
by (a, B). It is well-known that two such knots a/8 and a'/B’ belong to
the same knot type if and only if a = a’ and 8 *! = 8’ (mod a). In Figure
2.1 we show the trefoil knot 3/1 = 3/2 and the figure-eight knot 5/3 =5/2
depicted by using the normal Schubert form for 2-bridge knots.

The knot group of a/B has the 2-generator presentation

(u, v: uwla, B) = w(a, B) v),
where
w(a, B) =virue. yfe-3pfa-zyfa-1

and ¢; is the sign (= 1) of i reduced mod 2a in the interval (—a, a). If
1 <B<a—1, then a/f is hyperbolic, i.e. its complement in the 3-sphere
S? admits a complete hyperbolic structure of finite volume. The condition
1 <f < a—1 implies that a/f is not a torus knot (see [56]). Let O, (a/B)
be the orbifold whose underlying space is S3, and its singular set is o/B
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5/3~5/2 (a=58=2)

Figure 2.1. - The trefoil knot 3/1 and the figure-eight knot 5/2.

with branching index = = 1. The geometric structures of the orbifolds
0O, (a/B) are well-known [56] (see also [24] and [32]). Finding a geometric
structure for ©,(a/f) immediately implies that the n-fold eyclic covering
M ,(a/B) of the 3-sphere branched over a/8 has a structure modelled on
the same geometry [32].

THEOREM 2.1. Assume 1 <fB<a—1. The manifolds M ,(a/B) are
hyperbolic when a=5 and n=4 or a=5 and n=3. Furthermore,
M 5(a/B) is homeomorphic to the lens space L(a, B8) for any a, while
M 3(5/3) (i.e. the 3-fold cyclic branched covering over the figure-eight
knot) is Euclidean.

The following answers affirmatively the questions above for 2-bridge
knots [19].

THEOREM 2.2. The fundamental group of M ,(a/B) admits a cyclic
presentation G.,(o/f) whose split extension group H ,(a/B) is iso-
morphic to the fundamental group of the orbifold O,(a/B). Furthermore,
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Figure 2.2. - The 2-bridge knot (4% —1)/2.

the polynomial associated with G,(a/B) coincides (up to the sign)
with the Alexander polynomial of a/f.

ExaMPLE 2.2. The finite cyclic presentation (k=1)
P, k) = Loy ooy Tyoit T80 2@ 120X 0) T =1
(indices mod n))

defines the fundamental group of the n-fold cyclic covering of the 3-
sphere branched over the 2-bridge knot a/f = (4k —1)/2, shown in Fi-
gure 2.2. For k = 1 we obtain again the Sieradski groups considered abo-
ve. The defining word of P(n, k) is

w=xi'wex (@1 ox i w)!
so the polynomial associated with the presentation is
fu®) =kt?— (2k—1)t+k
which is in fact the Alexander polynomial of the knot (4% —1)/2.

ExamMPLE 2.3. The Fibonacei group defined by the finite presenta-
tion

F(2,2n) = (g, ..., Tan-1: T;iTis12i42=1
(indices mod n))

is isomorphic to the fundamental group of the n-fold cyclic covering M ,,
of the 3-sphere branched over the figure-eight knot 5/2 (or, equivalently
4,, according to the Rolfsen notation [51]). For » = 4, Helling, Kim, and
Mennicke [29] proved that F(2, 2n) can be realized as a discrete cocom-
pact subgroup of PSL (2; C) (i.e. the group of orientation preserving iso-
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metries of the hyperbolic 3-space H?). Hence the manifold M, =
= H3/F(2, 2n) is hyperbolic for any n =4, while M, is the lens space
L(5, 8) (so, it is spherical), and M ; is the Euclidean Hantzche-Wendt
manifold [63].

The defining word of F(2, 2n) is

W=Lgl %3]
and the associated polynomial is
fu®) =1+t—t?

which cannot be the Alexander polynomial of any knot. So this presenta-
tion does not satisfy Theorem 2.2. But there must be another one which
works well.

In fact [37], set y;=29;,, for any i=0, ..., n —1.

From Fibonacci relations

-1 —
Lo 1%2:%2i41=1
or equivalently,
—_ -1
Lo =i 1%2i+1
we get
-1
Y2i=Yi-1Y s

so we can eliminate the generators with even indices.
Now Fibonacci relations

Loi%gir 18542 =1
become
yihyiyihyi=1.
Thus F(2, 2n) also admits the following cyclic presentation
F(2,20) = (Yo, -os Yu-1: ¥it1yiyitr1yi=1
‘ (indices modn)).
The defining word of the new presentation is
w=y5'yiy:'y,
and the associated polynomial is

fot) = —1+3t~¢t2
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which coincides (up to the sign) with the Alexander polynomial of the fi-
gure-eight knot. In this case, the split extension group is presented

by
H,w)=(0,y: 6"=1, v(0,y)=1)
where

w0, y)=wy, 6 'yo, 6 2y6%)
=y —l(o—lyZO)(e—Zy—102)(0—1?/0)
=y_10_1y29_1y_10y0~

Setting y = 6 yields
H,w)=(0,A: 6"=1, A7'0712040°11"10i0=1)
=(6,A: 6"=1, [1,0]A=0"1[4,0))

where [4, 8] =179 7116. Since 1 is conjugate with 8 ~! (use the second
relation), it follows that A" =1. Thus we have

H,()=(8,1: 6"=i"=1, [4, 61A=0"[4, 6]).

We recall that the group presented by (6, A :[1, 811 =0"1[4, 6]) is the
fundamental group of the figure-eight knot 4,, where the generator 6 re-
presents a meridian of it. Thus the group H,(v) is the fundamental
group of the orbifold ©,(4,), whose underlying space is the standard 3-
sphere, and whose singular set is 4; with branching index =.

Moreover, the class of Fibonacei manifolds can be obtained as 2-fold
coverings of the 3-sphere branched along specified links. Let us denote
by Th,, n = 1, the closed 8-strings braid (o,03!)". It is obvious that Th,
is a 3-component link if » is divisible by 3, and it is a knot otherwise. The
initial members of the family Th,,, called Turk’s head links, are well-kno-
wn, and we show them in Figure 2.3. More precisely, we have that Th, is
the trivial knot, Th, is the figure-eight knot, Thy is the 3-component link
63 known as the Borromean rings, Th, is Turk’s head knot 8,5, and Thy is
the knot 10,53 (compare with the Rolfsen notation {51]).

Mednykh and Vesnin proved the following result in [44].

THEOREM 2.3. The Fibonacci manifold M ,, n = 2, is the 2-fold cove-
ring of the 3-sphere branched over the closed 3-strings braid (0,03 )",
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®-G-C

QD @

Thy =4 Thy = 63

L%] :

==

Ths = 10123

Figure 2.3. - Turk’s head links 4,, 63, 8,5, and 10;5.

i.e. the Turk head link Th,. In particular, the Heegaard genus of M,
equals 2, for any n=3.

In [43] the volumes of the Fibonacei manifolds were calculated in ter-
ms of the Lobachevsky function.
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THEOREM 2.4. For any n = 4, the hyperbolic volume of the Fibonac-
¢i manifold M ,, is given by

vol(M ,) = 2n(A(S + y) + A —y)),

)

Since M, is hyperbolic for any »n = 4, and its volume goes to infinity
as n gets larger, Theorems 2.3 and 2.4 imply that there exists an infinite
class of Heegaard genus 2 hyperbolic 3-manifolds with an arbitrary lar-
ge volume. This situation is completely different from that of dimension
2. In fact, if S, is the aspherical (hyperbolic) closed surface of genus g
(g = 2), then its volume equals 47(g — 1) by the Gauss-Bonnet theorem.
In particular, the volume of the connected sum of two copies of the torus
(ie. g =2) is 4n. By the Hurwitz theorem, the order of the isometry
group of S, does not exceed 84(g — 1). Now the class of Fibonacci mani-
folds shows that the 3-dimensional analogue of the Hurwitz theorem
does not exist at least in terms of the Heegaard genus (which represents
the natural extension of the 2-dimensional genus). More precisely, the
following was proved by Maclachlan and Reid [41] (for n =4, 5, 6, 8 and
12) and by Rasskazov and Vesnin [49] (for n = 6).

where y =2, and 6 = %arccos (cos(2y) -
n

0o |

THEOREM 2.5. Let M, be the (hyperbolic) Fibonacci manifold for
n=4. Then the isometry group of M, admils the finite presenta-
tion

Isom(M,) =(z,y: z*"=y'=(yol’=(y ')’ =1).

In particular, the order of Isom(M,) is 8n.

It follows that there exist infinitely many closed (hyperbolic) Hee-
gaard genus 2 3-manifolds with arbitrary large isometry groups.

We can now discuss examples of compact and noncompact manifolds
with the same volume. The affirmative answer to question 1.2 was given
in [43] by finding infinite series of compact and noncompact manifolds
whose volumes were calculated exactly in terms of the Lobachevsky
function.
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It was shown by Thurston [56] that for n = 2, noncompact manifolds,
obtained as complements S®\Th,, are hyperbolic and

vol ($3\Th,) = 4n(A(S + y) + A6 - y)),

where y = E”— and 6 = %arccos (cos(Zy)— %) In particular, we have the
n

asymtotic formula for volumes:
vol (S*\Th,,) ~ 8nA(7/6)

for n— . So there exist hyperbolic knots with an arbitrary large volu-
me of their complements.

By comparing this result with the formula in Theorem 24, we get
[43]:

COROLLARY 2.6. For any n =2, the compact Fibonacci manifold
M 5, and the noncompact Turk’s head link complement S*\Th,, have the
same hyperbolic volume, i.c.

vol (M 5,) = vol (S*\Th,,).

In particular, the volume of the Fibonacei manifold M 4 (resp. M ) is
equal to the volume of the (open) complement in S® of the figure-eight
knot (resp. of the Borromean rings).

We remark that topological properties of the Fibonacci manifolds are
well-studied. So there are different descriptions of these manifolds. It
was shown by Hilden, Lozano and Montesinos [31] that for any » the Fi-
bonacci manifold M, can be obtained as the n-fold cyclic covering of the
3-sphere, branched over the figure-eight knot. It was shown in [44] that
for any n = 2 the Fibonacci manifold M ,, can be obtained as the 2-fold co-
vering of the 3-sphere, branched over Turk’s head link T%, (see Theo-
rem 2.3). It was shown by Cavicchioli and Spaggiari {21] that for any =»
the Fibonacei manifold M , can be obtained by Dehn surgeries with para-
meters (1, 1) and (—1, 1) on components of the link that is the chain of
27 unknotted circles. So these manifolds belong to a series of Takahashi
manifolds, studied in [37] and [52], and considered in the next
section.
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/ by (k=2)

Figure 24. - The knot (2k); = (4k — 3)/2.

The following extends the cyclic presentation obtained for Fibonacei
groups [19].

THEOREM 2.7. The cyclically presented group
G(n, k) = (%, ..., Tur: wilwdi@ilemi ) i e ) 2 =1
(indices mod n))

18 isomorphic to the fundamental group of the n-fold cyclic covering of
the 3-sphere branched over the 2-bridge knot (4k — 3)/2 (o, equivalen-
tly (2k),, according to Rolfsen notation), k = 2, depicted in Figure 24.
The polynomial associated with G(n, k) is the Alexander polynomial of
the knot (2k),, i.e. (k—1)t2— 2k—-1)t+k~-1.

Other interesting families of cyclically presented groups, which in-
clude the Fibonacci groups and the Sieradski groups, were studied in
[37]. These groups were proved to encode the cyclic branched coverings
of the 2-bridge knots (4ml = 1)/21 by using Dehn surgery on a certain
chain of linked circles.
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Let us consider the cyclically presented groups G,(m, [; ¢) with n
generators x;, and n relations (¢ = =1)

(@it )mei = (@12t 2)™ (indices modn).

The following result is due to [37] (in [19] one can find an alternative
proof obtained by algebraic methods from combinatorial group the-

ory):

THEOREM 2.8. Let G,(m,l; €) be the cyclically presented group
with n generators x;, and n relations (e = *1)

(@i'wi O es g = (@ifat, )™ (indices modn).

Then G, (m, l; ) is isomorphic to the fundamental group of the n-fold
cyclic covering M ,((4ml + €)/21) of the 3-sphere branched over the 2-
bridge knot (4ml+ £)/2l, where ¢ = =1, The polynomial associated
with G ,(m, l; ) is the Alexander polynomial

Ay () =mlt? — (2ml+e) t +ml

of (dml + £)/21. The manifolds M ,,((4ml + £)/21) are hyperbolic for all
nz3ifm=2o0rl=2, and M ,(5/2) are hyperbolic for all n = 4. In the-
se cases, G ,(m, l; €) are hyperbolic groups (hence infinite) which enco-
de the corresponding manifolds.

Since the rational number (4ml — 1)/2[ can be expressed by the con-
tinued fraction

4ml—1 1
—2m-1+ —
21 1

21-1

the corresponding 2-bridge knot admits the Conway normal form C(21 —
—1,1, 2m — 1), and hence it has the same knot type as the pretzel knot
P(-1,2]1-1, 2m ~1) (see for example Theorem 2.3.1 of [34]). By [39],
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p. 57, a Seifert matrix for such a knot is

l l
Ve (”11 v12)=( .
Vay Voo -1 m+1-1

We can now apply the procedure described in [26] to determine the ho-
mology characters of the cyclic branched coverings of our knots (4ml —
—1)/21. Since detV =ml, and

w=g.cd. (vyy, Vgt Vg, V)
=ged (,2l-1,m+[~-1)=1,

the homology groups of M ,((4ml + £)/21) can be completely computed
from [26] (for ¢ =1 see the remark above).
The following can be found in [19].

THEOREM 2.9. Let M, =M ,((4ml + £)/21) be the n-fold cyclic cove-
ring of the 3-sphere branched over the 2-bridge knot (4ml + €)/21, where
e = =1. Then the first integral homology group of M, is

Ziami+ oo, PZja,) m even

H,M,)=
Z'bn| ®Z|bn| n odd

where

a1=a’2=1) a’n+2=a’n+l+£mwn
b1=1, b2=1+28ml, bn+2=bn+1+8mlbn.

To complete this section we discuss some series of hyperbolic mani-
folds which are cyclic branched coverings of (hyperbolic) links with two
components. Let L = K| U K, be an oriented link in the 3-sphere. Let us
denote by ©,(L) the 3-orbifold whose undelying space is S® and whose
singular set is the link L of branching index %. The fundamental group of
the orbifold ©,(L) is isomorphic to the factor group of 7,(S*\ L) over the
subgroup generated by m? and m%, where m; is the homotopy class of
an oriented meridian of K ;, i =1, 2. The abelianized group of 7,(0,(L))
is isomorphic to Z, @ Z,, (generated by the images of the classes m, and
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m ). For any integer k # 0 with (k, n) =1, let us consider the homomor-
phism

wn,k: nl(On(L)) '_)nl(on(L))ab = Zn$Zn_)Zn

defined by v, ((m;) =1, and v, (m;) =k. Let M, (L) denote the
closed orientable 3-manifold which is the (strongly) cyclic branched co-
vering of L corresponding to the kernel of v, ;. Suppose now that L is a
hyperbolic link, i.e. the (open) complement of L in S is a hyperbolic 3-
manifold of finite volume. By Thurston’s hyperbolic surgery theorem,
the orbifold O,(L) and the manifold M, ,(L) are hyperbolic for suffi-
ciently large n. Moreover, the isometry group of O,(L) and that of
M, (L) are finite groups.
The following was proved in [64].

THEOREM 2.10. Under the notation above, suppose that n does not
divide the order of the isometry group of O,(L). Then M, (L) is isome-
tric (homeomorphic) to M, (L) if and only if there exist isometries
oM, (L)y—>M, (L) and D:0,(L)—> O,(L) such that the dia-
gram

M (L) —=> M, (L)

| |

OL) —> O L)

commutes. In particular, M, (L) =M, (L) if and only if k= k'
(mod n) or kk' = 1 (mod n).

This result extends in some sense the classification of lens spaces
which are the cyclic branched coverings of the Hopf link (which is not
hyperbolic however) [51}. Theorem 2.10 applies for example to classify,
up to isometry, the cyclic branched coverings of the Whitehead link ¥
(which is hyperbolic) shown in Figure 2.5. In this case, the orbifolds
0,(W) and the n-fold cyclic coverings M, (%) branched over ¥ are
hyperbolic for any n = 3. Furthermore, the order of the isometry group
of 0,(W) equals 8. Explicit constructions by polyhedral schemata of the
strongly branched coverings of the Whitehead link were given in [30]. In
particular, nice presentations for their fundamental groups were obtai-
ned as follows.




[19] RECENT RESULTS ON TOPOLOGY OF THREE-MANIFOLDS 49

Figure 2.5. - The Whitehead link .

THEOREM 2.11. Let I',, i be the finite group presentation
Ly o =(Co, -y Tn-1, Y ToTpZop- - Tn-1e=1
el xigmixil=y
(indices modn)),

where (n, k) =1, and n=3. Then I',, , corresponds to a spine of the n-
Jold strongly cyclic covering M ,, (W) of the 3-sphere branched over the
Whitehead link 9. Moreover, M ,, ,(\$) is homeomorphic to M, ;- (W)
if and only if k= k' (mod n) or kk' = +1 (mod n).

It is a routine matter to compute I'® , = H (M ,, (%)) from the pre-
sentation above. So we obtain the following result.

THEOREM 2.12. Let n=3 and let k (mod m) satisfy conditions
(k,m)=1and 1 <k=<[(n—1)/2). Then the manifold M, (V) has the
homology:

ZsPLp®Zy, n=0mod6)
Z,®Z,,®Z,, n==x2(mod 6)
Z,sDL, D72y, n=3(mod 6)
7Z,®7,97Z, (n,6)=1.

Hy(M, (W) =

The classification of the geometric and topological structures of all
cyclic (also non strongly) coverings of the 3-sphere branched over the
Whitehead link was obtained by Cavicchioli and Paoluzzi in [16].




50 ALBERTO CAVICCHIOLI - DUSAN REPOVS - ANDREI VESNIN (20]

3. — Manifolds obtained by Dehn surgery.

Consider the link L ,, with 2n components in the oriented 3-sphere
(n = 2) shown in Figure 3.1. Each component is unknotted, oriented and
linked with exactly two adjacent components. Let us denote by
M®Pi/qy, ..., PulGn; 71/S1s -y TolSy), or briefly M(p;/q;; r;/s;), the

P2/ %
nl® 72/s,

e
AN -

|._ — —_— —_— —_— LA N — — — -— —|

SO0 - T

f
L.

L2n

[ufg—uf@—u})—uhj

Lg L4 ‘ L5 LS
Figure 3.1. - The link L,,.
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closed connected orientable 3-manifold obtained by Dehn surgery along
the link L,, with surgery coefficients p;/q; and r;/s;, for any i{=
=1, ..., n, according to Figure 3.1. These manifolds were first considered
by Takahashi in [55], so, for convenience, we refer to them as the Ta-
kahashi manifolds.

The following was proved in [55].

THEOREM 3.1. The finite presentation
(@1, ooy Lop: THXBILY =23,
SR PYARE 2 A
(indices mod2n))

corresponds to a spine of the Takahashi manifold M(p;/q;; ri/s;).

In particular, if p;/r;=1and r;/s;= —1foranyi=1, ..., n, we have
the Fibonacei manifolds. If p;/r; =k/l and r;/s; = —k/l, we obtain the
Fractional Fibonacci manifolds studied in [36]. Furthermore, by using
the Kirby-Rolfsen calculus, one can directly verify that Sieradski mani-
folds are also included in Takahashi manifolds (see [37] and [52]).

We observe that the link L, is strongly invertible. By using a well-
known theorem of Montesinos, the following result was proved indepen-
dently in [37] and [52].

THEOREM 3.2. The Takahashi manifold M(p;/q;; r;/s;) is the 2-fold
cyclic covering of the 3-sphere branched along the closure of the ratio-
nal 3-string braid

o8Vaighsy | gBalin gTalts

which is depicted in Figure 3.2 (here any rectangular box stands for the
rational tangle defined by the ratio inside it).

In particular, the 2-fold branched coverings of closed 3-string braids
are Takahashi manifolds.

Since L, is also hyperbolic, we can apply the Thurston-Jgrgensen
theory of hyperbolic surgery to state that for almost all the pairs (p;, ¢;)
and (r;, s;) the Takahashi manifolds M(p;/q;; r;/s;) are hyperbolic.

We now show that the closed orientable 3-manifolds obtained by
Dehn surgery along the Whitehead link form a special subclass of the
Takahashi manifolds. This class is of particular interest since it contains
the ten smallest volume hyperbolic 3-manifolds. More precisely, the
structure of the initial segment of the set of volumes was firstly conjec-
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p/a

~N

rn/n

Pa/an

Tol/3n

»/q

n

€2

Figure 32. - The rational braid o%"916511 . gB*n i/,

[22]
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WFII L

]
|

2+4

Al
+
[
[

—

/_W{/—/\%

Figure 3.3. - The link £(m/n; p/q).

tured by Fomenko and Matveev [25]. Hodgson and Weeks [33] described
the ten smallest known manifolds in term of Dehn surgery on some lin-
ks. We are going to discuss covering properties of these manifolds.

Let us denote by W(m/n; p/q) the closed orientable 3-manifold obtai-
ned by m/n and p/q Dehn surgeries on the Whitehead link W.
Consider a series of links £(m/n; p/q) pictured in Figure 3.3 (which are a
special case of the link presented in the statement of Theorem 3.2).

The following result gives the connection between these links and
manifolds W(m/n; p/q) 145]:

THEOREM 3.3. Let M = \W(m/n; p/q) be the closed orientable 3-ma-
nifold obtained by m/n and p/q Dehn surgeries on the Whitehead link
W. Then M is the 2-fold covering of S® branched over the link
Lm/n; plq).
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In particular, we get the description of the ten smallest volume
hyperbolic 3-manifolds:

vol (1) vol (S3\£) L
M, = "\x‘)( - g; —5) 0.9427 ... 9.4270 ... 94
My = W(1; —5) 0.9813 ... 5.6387 ... 10,6,
My = w(—%; —6) 1.0149 ... 8.1195... 102,
M, = W(—5; —5) 1.2637 ... 9.2505 ... 10,55
My = W(1; —6) 1.2844 ... 5.8430 ... 112
Mg = w(1; —%) 1.3986... 5.8296 ... 14,
mzw(_%; _6) 14140... 5.9782... 113
Mg = W(2; —5) 1.4140... 7.7948 ... 113
My = w(— %; —5) 1.4236 ... 10.6933 ... 10,6
Myo = w(1; —%) 1.4406 ... 7.1180... 13,

Here «?» in the suffices means that corresponding knots or links are of
too big order and they are not contained in the standard tables of knots
and links known from the literature.

Observe that by [47] each of manifolds W(1/n; 1/¢), W(1/n; 2/q)
with ¢ odd, and W(2/n; 2/q) with n and ¢ odd, has three hyperelliptic
involutions.

The smallest known closed hyperbolic 3-manifold J; was obtained
by Fomenko and Matveev [25] and by Weeks [60]. The lattice of the ac-
tion of the isometry group Isom (I,) = Dg on the Fomenko-Matveev-
Weeks manifold I, was described in [46]. In particular, we get the follo-
wing descriptions of this manifold [46].

COROLLARY 3.4. The Fomenko-Matveev-Weeks manifold I, can be
obtained as the 2-fold covering of S° branched over the knot 949, and as
the 3-fold covering of S® branched over the knot 5.

The knots in Corollary 3.4 are depicted in Figure 3.4.

Recall that JI, is an arithmetic manifold, and moreover it is the smal-
lest volume arithmetic manifold.

There are nice estimates of volumes of manifolds as follows. In virtue
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( >

949 52

Figure 3.4. - The knots 9, and 5,.

of {27] for any closed hyperbolic 3-manifold M, we have that vol(M) =
= 0.00115. If the first integral Betti number of M is at least 3, then a result
due to Culler and Shalen [23] implies that vol (M) = 0.92.

Analogously, to study the initial segment of volumes of compact
orientable 3-manifolds, it is interesting to consider the initial segment of
volumes of hyperbolic knots. Their volumes were tabulated in [2]. In par-
ticular, it was shown in [8] and [9] that the five smallest volume knots ha-
ve the following volumes:

vol (S*\4,) =2.029...  vol(S*\(—2; 3; 7)-pretzel knot) =2.828...
vol (S3\5,) =2.828... vol(S?\6,) =3.163... vol(S3\7,) =3.331...

Finally, we complete the section with a list of some open pro-
blems:

3.1) [28] Do there exist hyperbolic 3-manifolds M and N such that
the ratio vol (M)/vol (N) is irrational?

3.2) [38], Problem 3.94. The smallest volume Fomenko-Matveev-
Weeks manifold I, is of Heegard genus 2. What is the smallest volume
manifold for a given Heegaard genus g = 37

3.3) Let K be a knot in S® and O, (K) the orbifold with the underly-
ing space S® whose singular set is K with singularity of order n. If K = 4,
is the figure-eight knot and »n =4, then it follows from results on volu-
mes of [43] that 4 vol (O,(4;)) = vol (S®\4,). Does there exist another K
and 7 such that nvol (O, (K)) = vol (S*\K)?
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NS

9#
Figure 3.5. - Conway’s polyhedra 6*, 8* and 9*.

3.4) Do there exist non-compact 3-orbifolds 7,eS?® such that
vol(M ,) =vol(T,), where M, is the Fibonacci manifold and n is
odd?

3.5) For a given Conway basic polyhedron [22], what is the smalle-
st volume zm-orbifold whose singular set is a link corresponding to this
polyhedron? (If Conway basic polyhedron is 6*, i.e. the octahedron, then
the smallest volume s-orbifold has singular set the knot 9,). In particu-
lar, what are the smallest s-orbifolds corresponding to Conway polyhe-
dra 8* and 9* shown in Figure 3.5?

3.6) What is the smallest volume of a hyperbolic manifold with a
given number N of hyperelliptic involutions? We conjecture from [47]
that the smallest volumes are:

N=1: vol(I, = W(5,5/2)) =094 ...
N=2: vol(O, = W(1, —5)) =098...

N=3: vol(IMg="W(1, —1/2)) =1.39...
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4. - Knot spaces.

The following is a central problem of (Texas) geometric topology
school (R. H. Bing and his circle):

Let X be a topological (unknown) space. Find conditions under which
there exists a continuous surjection f : M — X where M is a topological
manifold. We assume to know the topological properties of M and f, but
it is unknown the topological properties of X, e.g. Is X metrizable resp.
separable, finite dimensional, an ANR, a homology manifold, a topologi-
cal manifold, homeomorphic to M?

A typical method of investigation is to study fibers (point-inverses) of
the map f and try to find a better map f' which is close to f. In conclusion,
it is important to understand topological properties of the family
{fY=x): zeX}.

For a motivation in dimension 3, consider a classical example given
by the Bing dogbone space shown in Figure 4.1. Let 2 be the set of con-
nected components of the intersection

ToN(TUTqUT,UT )N ...

Then we have a map from R3 onto the quotient X = R3/Q. The following
was proved by Bing in [6]:
THEOREM 4.1. Under the above notation, we have:

(1) X is not a topological 3-manifold,;
(2) the product X x R is homeomorphic to R*.

To understand the idea of the proof of (1), look at the picture in Figu-

Figure 4.1. - Bing’s dogbone space.
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re 4.1, and consider the disks D and D ;. Their boundaries can not span
any pair of disks which would not intersect in the quotient space. To see
(2) recall that links in R® can be unlinked in R®. So the entire pattern of
£ can be unlinked.

So Bing topologists study the pre-images f~'(x)’s, and, in particular,
we shall be interested in regular neighborhoods of compacta embedded
in piecewise-linear (PL) manifolds of dimension =3.

PROBLEM 4.1. Given a compact 3-manifold M3, a compact polyhe-
dron K, and homotopic PL: embeddings

f1=f23K_’M3

when are the regular neighborhoods N, and N, of f,(K) and f5(K), re-
spectively, in M3 homeomorphic, i.e. PL isomorphic?

EXaMPLE 4.1. Let M3 be the 8-sphere S?, and K the wedge S?V §'V
S!. Clearly, the regular neighborhoods of the compacta, embedded in S®
as shown in Figure 4.2, are not homeomorphic. However, 3N, and dN,
have (at least) something in common, i.e. the number of connected com-
ponents and the Euler characteristics. More precisely, we have the folio-
wing result:

THEOREM 4.2. Let M3 be a compact 3-manifold, K a compact po-
lyhedron, and fi, fo: K—int M3® PL embeddings such that

(f)e= () Ho(K; Zo) > H (M Zs).

If N; ts a regular meighborhood of f;(K) in intM, then we have

O [

Figure 4.2. - Example: M®= 8% and K= 82V S!S\,
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b,.(ON; Zy) =b,(8Ny; Zy) for every n, where b,(-) denotes the n-th
Betti number.

The proof is based on diagram chase (the homology is taken with coeffi-
cients in Z,):

0 — HyM) — H;M, M\f,(K)) = H,(M\f(K))

| | |

0 - HM) -  HY(f,(K) — HM, f1(K)
HoyM\fi(K)) —  Hy(M) — Hy(M, M\f,(K))

| | |

HWM, fi(K) — H'M) -  H(f,(K))

By using standard 3-manifold topology, the following result was pro-
ved in [50].

THEOREM 4.3. Let K be any compact 2-polyhedron, and f, fz: K—M
homotopic PL embeddings into the interior of a compact 3-manifold M.
Suppose that any one of the following conditions holds: either dim K<1,
or K is a surface with nonvoid boundary, or K is the 2-sphere (resp.
the real projective plane). Then every two regular meighborhoods N
and N, of fL(K) and f.(K), respectively, in int M are PL isomor-
phic.

CONJECTURE 4.1. Let K be any compact polyhedron such that
H,(K; Zy) =0, and let f,, fo: K— M be any homotopic PL. embeddings
in the interior of a compact 3-manifold M. Suppose also that for any re-
gular neighborhood N; of f;(K) in M, ¢ =1, 2, the genus of N ; is zero.
Then N; is homeomorphic to N,.

Note that if Conjecture 4.1 is true, then the Poincaré conjecture is
equivalent to the following statement: Every homotopy 3- cell has a spi-
ne which PL embeds in R3.

The proof in the «only if» direction is obvious. For the converse, we
need Conjecture 4.1. Let F be a homotopy 3-cell, and C be a tame 3-cell
embedded in the interior of F' as shown in Figure 4.3. By hypothesis, a
PL embedding f : K—int C exists. Now one can use Conjecture 4.1 to
conclude that N, =N,. Hence N, is a genuine 3-cell.

The genus zero case turns out to be the only case with the possibility
of an affirmative answer to our question, because as we shall demonstra-
te, for every genus =1, there exists a counterexample.
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F —— homotopy 3-cell

C == tame 3-cell
N,

Figure 4.3. - The homotopy 3-cell F and the tame 3-cell C embedded in
int (F).

We now come to knot theory. Let K, be the square knot, and K, the
granny knot, depicted in Figure 4.4. Let us consider the knot spaces N,

o

Figure 4.4. - The square knot and the granny knot.
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and N, of these two knots, i.e. N is the complement in S? of an open tu-
bular neighborhood of K ;, for i =1, 2. It is well-known that N, can not
be homeomorphic to N,. However, it was proved independently, using
completely different techniques, by Mitchell-Przytycki-Repovs [48] and
Cavicchioli [10] that N, and N, possess homeomorphic spines. This yiel-
ds a counterexample for the genus 1 case.

The following more general result is true [48]:

THEOREM 4.4. Let K(p, q) be the (p, q)-torus knot in the standard 3-
sphere, where p and q are any relatively prime numbers = 2. For any
knot L in S, let N | be the knot space of the composite knot K(p, q)#L,
and N , the knot space of K(p, —q)#L. Then there exist a 2-dimensio-
nal compact polyhedron P and PL embeddings ¢ ;: P—int N ; such that
@;(P) is a spine of N;, i.e. N; collapses onto ¢ ;(P).

. K(p,q)
(p=3) (2=2) Zy Z

Figure 4.5. - The spine of a torus knot space.
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glue
inside
K; -
along

an

annulus

Figure 4.6. — The spine of the knot space of the composite knot K, #K,.

In particular, the respective knot spaces of the sums of knots
K(p, q)#K(p, q) and K(p, q)#K(p, —g) are not homeomorphic but they
do possess homeomorphic spines. For this, it is necessary to first under-
stand the spine of a torus knot space (see Figure 4.5). Secondly, under-

¥ = the spine of K 1\ X9 = the spine of K 2

A .
BT : :
0 0 knot (I ] [0 {knot: [ —_—
TR A .
o

C = the circle along which ¥, intersects ¥y

Figure 4.7. - The spine X of K, #K is given by the glueing ZILCJZz.
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T TN

Figure 4.8. — The granny knot space and the square knot space.

stand the spine of the knot space of a connected sum of knots (see Figure
4.6). Therefore, the spine X of the knot space of K, #K, is given by the
glueing zllélzz, where X', is the spine of the knot space of K;, and C is

the circle along which X, intersects X, (see Figure 4.7). In Figure 4.8 we
show the above constructions for the granny knot space and the square
knot space.

CAVEAT. The compact 3-manifolds, shown in Figure 4.9, are not ho-
meomorphic, but however, after drilling a hole in each one of them, they
become homeomorphic (see Figure 4.10). So a simple idea of getting hi-
gher genera examples by drilling holes into the nonhomeomorphic knot
spaces described above does not work since they may no longer be diffe-
rent 3-manifolds after the drilling is over. Stronger tools are needed and
we shall discuss them below.
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Figure 4.9. - Two non-homeomorphic 3-manifolds.

Now we recall some standard definitions of knot theory. Let K be an
oriented knot in the right-hand oriented 3-sphere S®. Then K denotes
the image of K under an orientation reversing homeomorphism of S?, i.e.
K can be seen as the mirror image of K. The inverted knot, written rK, is
the knot K with the reversed orientation. The knot K is called invertible
if K = rK (here = denotes the equivalence of knots). The knot K is called
amphicheiral if K = K. The knot K is called simple if the knot space X of
K is atoroidal, i.e. every incompressible torus is boundary parallel. For
example, the trefoil knot is invertible but it is not amphicheiral (see
Figure 4.11).

The following result on spines of knot manifolds was proved in
[12].

THEOREM 4.5. Suppose that n is a Wirtinger presentation (with de-
ficiency one) of the knot group of K. Then the two-dimensional complex

|

1€

Figure 4.10. — The homeomorphic 3-manifolds obtained by drilling a hole in ea-
chone of manifolds in Figure 4.9.
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CED|CD
o

Figure 4.11. - The trefoil knot is invertible but not amphicheiral.

K, (with one vertex), canonically associated with 7, is a spine of the
knot manifold of K.

Theorem 4.5 directly implies the existence of many examples of no-
nhomeomorphic compact 3-manifolds M, M,cS® with M, =S' x S!
which admit the same spine. The following result, due to Caviechioli and
Hegenbarth [12], extends earlier constructions on connected sums of to-
rus knots, given in [48].

THEOREM 4.6. Let K,cS® be an invertible nonamphicheiral knot
and let K,c S? be an arbitrary knot. Then the knot manifolds of K, #K ,
and K, # K (K, being the mirror-image of K ,) have a common spine. If
K, is also monamphicheiral, then these knot manifolds are not
homeomorphic.

In particular, for any invertible nonamphicheiral knot K, the knot
manifolds of K # K and K # K are not homeomorphic but they do possess
a common spine.

To construct examples with boundary genus greater than one, we
need the concept of -manifold, introduced in [15]. Let (K, K,, K3) be
the oriented 8-curve, embedded in S?, and formed by two points joined
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with three arcs knotted according to the oriented knots K |, K,, and K3,
respectively. Let M(K,, K,, K3) be the closure of the complement of a
regular neighborhood of this graph in S®. Then M = M(K |, K, K3) is
an irreducible 8-manifold, with boundary of genus two, called a 6-mani-
fold. 1t is also oriented with orientation induced by the one on S3. Ob-
viously, this construction can be generalized to give manifolds with hi-
gher boundary genus.

From Jaco-Shalen-Johannson theory of characteristic varieties we
apply the Torus Decomposition Theorem for compact irreducible 3-ma-
nifolds: there exists a collection of incompressible tori in M? which sep-
arate M into atoroidal or Seifert fibered pieces. Such a collection is mini-
mal and unique. These decomposing tori for the 6-manifold
M(K,, K,, K3) are three annuli, T, T, and T'; say, which run around
the knotted parts of the 6-curve (K, K5, K3). Tori Ty, T'y, and T g sep-
arate M(K,, K,, K;) into four components: X, X,, X3 are the exteriors
of the knots K, K,, K 3, respectively, and X, is a genus 2 orientable han-
diebody minus the three standard unknotted solid tori. Clearly, X,, X,,
X3, and X, are atoroidal. Also, X 4 is not Seifert fibered since it has a ge-
nus 2 boundary component.

PROBLEM 4.2. Do there exist compact connected non-homeomorphic
3-manifolds M,; and M,cS® such that 8M,=3M,, genus =2, and
7t (M) = n(M,) is not a nontrivial free product, but M ; and M ; never-
theless possess the same spine?

An affirmative answer to problem above was given in [15]:

THEOREM 4.7. Let K be any simple oriented knot in the oriented 3-
sphere S®. Let My, My, M3 and M, be the following 6-manifolds:

(i) M,=M(X, K, K)
(1) My=M(K, K, rK)
(#i1) M3z=MK, rK, rK)
(v) M,=MrK, rK, rK).

If K =7rK, then these manifolds are trivially all homeomorphic.

IfK#=rK, then M= My=M =Mz, and M =M, ,and My=M,if
and only if K = K (up to an orientation preserving homeomorphism). If
orientation reversing homeomorphism is also permitted, then M=
=M,=M,=M,.
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In particular, if K is the trefoil knot, then the 6-manifolds
M(K, K, K) and M(K, K, K) are not homeomorphic since K is invertible
but nonamphicheiral. However, it was proved in [15] that these 3-mani-
folds have the same spine. They are also irreducible, have incompressi-
ble boundaries and hence their fundamental groups are not nontrivial
free products (see [15]).

THEOREM 4.8. Let K, K,, K5 and K3, K}, K3 be any oriented sim-
ple knots in the oriented 3-sphere S* and let M(K,, K., K3) and
M(K1, K3, K3) be the corresponding 0-manifolds. Suppose that

h: MKy, K2, K3)—>M(K1, K3, K3)

18 an orientation preserving homeomorphism.

Then either {K,, K,, K3} = {K{, K3, K3} or {K,, K:, K3} =
= {rK1i, rKj, rK3}.

Remarks:

(1) The converse is evidently true.
(2) Theorem 4.8 generalizes to n knots (n > 3).
(3) Theorem 4.8 is also true for nonsimple knots.

Theorem 4.8 provides the answer to Problem 4.2.

Now we repeat the proof of Theorem 4.8 given in [15]. By the unique-
ness of the Torus theorem we may assume that h(T';) =T, for some j
(after an ambient isotopy if necessary), where T'{, Tz and T3 are the de-
composing tori for the 8-manifold M(K{, K3, K3). By reindexing we get
KT;) =T;. Then we also have i(X;) = X}, where X is the exterior of
K!in M(Ki, K3, K3). By a theorem of Gordon and Luecke, knots are
determined by their complements. Therefore, the (unoriented) meridian
and longitude of a knot complement are well-defined. Thus & maps the
meridian of X; to that of X!, 1 =1, 2, 3, either preserving or reversing
orientation. However the oriented meridians of X, X, and X 5 represent
classes of the first integral homology group of M(K,, K,, K3) that add
up to zero and satisfy no other relation. The same holds for meridians of
X1, X5 and X3. Therefore, if h reverses the orientation of one meridian,
then it must do so with all meridians. Since % preserves the orientation
and reverses the meridian, it must reverse also the corresponding longi-
tude. Hence, either K, = K; or K;=rK; for each i =1, 2, 3. This com-
pletes the proof.

THEOREM 4.9. Let K, K, and K3 be oriented knots in the oriented
3-Sphe"'e Sg. Then the e'man’l;fOLdS M(Kl, Kz, K3) and M(Kl, Kz, TK;;)
have the same spine.
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Following [15), we present the proof of this theorem. Let U denote
the unknot in S® and, as usual, let X3 be the exterior of K;. Then
MK,,K;,K;) can be viewed as M(K,, K,, U)UX,;, and
M(K,, K,, U)yN X3 is an annulus in the boundary of each part. We can
collapse this to have M(K,, K,, U) N X; equal to a simple closed curve
6, a meridian of X g, plus the core of the annulus (in the boundary of ea-
ch). Similarly, let X} be the exterior of *K;. Then M(K,, K ,, rK;) col-
lapses to a copy of M(K,, K,, U) U X3 with M(K,, K,, U) N X; being
the same simple closed curve d in IM(K,, K,, U). Now, there exists a
homeomorphism X ;— X ; which is the identity on o (it is the reflection
across the plane of ). Extend it, by identity, to a homeomorphism

M(Kh K27 U)UX:}'—)M(K], Kz, U)UXé.

Collapse further to get a 2-dimensional polyhedral spine. Thus the proof
is complete.
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