Journal of Knot Theory and Its Ramifications “P World Scientific
Vol. 12, No. 2 (2003) 243-268
© World Scientific Publishing Company

www.worldscientific.com

TOPOLOGICAL PROPERTIES OF
CYCLICALLY PRESENTED GROUPS

ALBERTO CAVICCHIOLI
Dipartimento di Matematica
Universita di Modena e Reggio Emilia
Via Campi 213/B, 41100 Modena, Italy
cavicchioli@unimo.it

DUSAN REPOVS
Institute of Mathematics, Physics and Mechanics
University of Ljubljana
P.O. Boz 2964, Ljubljana 1001, Slovenia

dusan.repovs @Quni-lj.si

FULVIA SPAGGIARI
Dipartimento di Matematica
Universita di Modena e Reggio Emilia
Via Campi 213/B, 41100 Modena, Italy
spaggiari@unimo.it

Received 7 December 2001

ABSTRACT

We introduce a family of cyclic presentations of groups depending on a finite set of
integers. This family contains many classes of cyclic presentations of groups, previously
considered by several authors. We prove that, under certain conditions on the parame-
ters, the groups defined by our presentations cannot be fundamental groups of closed
connected hyperbolic 3—dimensional orbifolds (in particular, manifolds) of finite volume.
We also study the split extensions and the natural HNN extensions of these groups, and
determine conditions on the parameters for which they are groups of 3-orbifolds and
high-dimensional knots, respectively.
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1. Cyclically Presented Groups

Let F, be the free group on n free (ordered) generators z1, ... , T,. Let 6 denote
the automorphism of F, defined by setting 6(z;) = z;+1, where the subscripts are
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reduced modulo n. For any cyclically reduced word w in F,, let us consider the
normal closure Ny, (w) in F,, of the set {w, §(w),...,0" 1 (w)}, and let G,,(w) denote
the factor group F,, /N, (w). Of course, G, (w) admits a balanced presentation with
n (ordered) generators, also denoted by z1, ..., Z,, and n relators obtained from
the single word w by all cyclic permutations of the generators. Following [23], we say
that a group G has a cyclic presentation (or, equivalently, G is a cyclically presented
group) if G is isomorphic to G,(w) for some n and w. There is a polynomial
fw(t) associated with G,(w), whose i-th coefficient is the exponent sum of the
generator x; in the defining word w. This polynomial is very useful to determine
when the abelianized group An(w) of Gn(w) is finite or not. It was proved in
[24] (see also [23]) that An(w) is infinite if and only if f,,(¢) vanishes on an n-th
root of unity. If A,(w) is finite, then its order is the module of the product of all
complex numbers f,,(§)’ s, where £ runs through the set of (primitive) n—th roots
of unity. Furthermore, A,(w) is trivial if and only if f,,(¢) is a unit in the ring
Z[t]/(t™ — 1). The automorphism 6§ of F,, naturally induces an automorphism p of
order n on Gp(w). Let Hy,(w) denote the split extension group of G,(w) by the
cyclic group Z, (generated by p). Then H,(w) has a finite presentation with two
generators, z1 and p say, and two relations of the form p” = 1 and v(p,z;) = 1.
This relation is obtained from the defining word w substituting any generator z;
with the formula z; = p*~1z;p~(~1) (indices mod n). It is known that G, (w) is
trivial if and only if H,(w) is cyclic of order n, and that G, (w) is finite if and only
if H,(w) is finite (see the references above). Cyclically presented groups are very
interesting from a geometric point of view since there are many connections with
the theory of closed connected 3-manifolds. It is an open problem to determine
which cyclic presentations of groups correspond to spines of closed 3-manifolds,
and, in particular, for which classes of knots the cyclic branched coverings give
rise to such presentations (for knot theory we refer for example to [3] and [32]).
Another question is to establish when a cyclically presented group cannot be the
fundamental group of a closed hyperbolic 3-orbifold (in particular, 3-manifold) of
finite volume. In the present paper we discuss the above questions for a new family
of cyclic presentations of groups, which depends on a finite set of positive integers.
This family contains many classes of cyclic presentations which have appeared in
recent years. So, our results generalize and extend earlier work due to Maclachlan,
Szczepanski, Vesnin and others. We also study the split extensions and the natural
HNN extensions of the cyclically presented groups defined by presentations of our
family, and determine conditions on the parameters for which they are 3—orbifold
groups and high—dimensional knot groups, respectively.



Topological Properties of Cyclically Presented Groups 245

2. Some Series of Cyclic Presentations

We introduce the following family of cyclic presentations of groups depending
on positive integers:

r—1 s—1
Gn(h, ki, 57,53 £) = Ga(([ | #1440)" (J] #148150) ™)
i=0 §=0

=< T1y..-,Tn: (mimi-l—p © Tigp(r—1) )E = (xi-l—h te 331‘~I—i1.—{—q(s—1))1C
(t=1,...,n) >

where the subscripts are reduced modulo n, and r» > 2.
This family contains many classes of cyclic presentations of groups, previously
considered by several authors.

(1) The groups
Gn(2,1;1,1;2,1;1) = Gp(z12023 )

are called the Fibonacci groups F'(2,n) introduced in [15] (see also [16]). The group
F(2,2m), m > 2, is the fundamental group of the m—fold cyclic covering of the 3-
sphere branched over the figure-eight knot, as proved in [21] (a surgery description
of these manifolds can be found in [14]). For any m > 4, the group F(2,2m) is
hyperbolic, i.e., it can be regarded as a discontinuous subgroup of PSL(2;C), the
group of orientation—preserving isometries of the hyperbolic 3-space H* (see [20] for
the proof). The Fibonacci groups with odd number of generators (n > 3) cannot
be fundamental groups of closed hyperbolic 3-orbifolds (in particular, 3—manifolds)
of finite volume (see [26]). Recall that a hyperbolic 3-orbifold is a quotient space
of the form H3/T', where I is a discrete group of isometries of H? (in particular, if
T is torsion—free, we obtain the notion of hyperbolic 3-manifold). For the theory of
geometric orbifolds see for example [18] and [42].

(2) The groups

r—1 r—2
Gn(1,1;2,2m,7 = 1;1) = Gu(([ [ 225)(J [ 22542)™)
3=0 3=0

are called the generalized Sieradski groups S(r,n), r > 2, n > 2, introduced and
geometrically studied in [7]. For r = 2, we get the so-called Sieradski groups
S(n) = Gn(z12375 "), first considered in [35]. The group S(r,n) is the fundamental
group of the n—fold cyclic covering of the 3—sphere branched over the torus knot of
type (2r — 1,2), as shown in [7] (see also [8] for cyclic branched coverings of torus
knots). This manifold is homeomorphic to the Brieskorn manifold M(2,2r — 1,n)
in the sense of [28]. Thus the groups S(r,n) are non-hyperbolic.
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(3) The groups
Gn(r7 11,571 1) = Gn($1x2 ce CL‘TCL‘I__&,,.)

were introduced in [25] (and denoted by F'(r,n), r > 2, n > 3) as a natural gene-
ralization of the Fibonacci groups F(2,n) (and in fact they are called by the same
name in the current literature). The groups F(n—1,n), n > 3, are the fundamental
groups of closed connected orientable 3-manifolds (see [29]). These manifolds are
known to be homeomorphic to Seifert fibered spaces (see [6]), and so the groups
F(n — 1,n) are non-hyperbolic. If r is even (r > 4) and n is odd and coprime
with r + 1, then F(r,n) cannot be the fundamental group of a closed hyperbolic
3-orbifold of finite volume (see [36]).

(4) The groups
Gn(r+k—-1,1;1,1;7,1;1) = Gp(z122 - --me;:k)
and
Gn(r,1;1,1;7,k; 1) = Gp((z122 - 2 ) (T2 -+ mr+k)"1)
were defined and algebraically studied in [4] (and denoted by F(r,n,k) and
H(r,n,k), respectively) for any r > 2, n > 3, and k£ > 1. Obviously, they re-
present further generalizations of the Fibonacci groups F(r,n). If r is even and n is
odd and coprime with r+2k—1, then F(r,n, k) cannot be the fundamental group of
a hyperbolic 3-orbifold of finite volume (see [39] for the proof). Analogous results
have also been obtained in that paper for two extremal cases with n = r + 2k — 1,
i.e., k =1and r = 2. For any k > 2, the groups H(k, 2k—1,k—1) were proved to be
isomorphic to generalized Sieradski groups S(k, 2k — 1), so they are non-hyperbolic
(see [39]).

(5) The groups
Gn(s,c; 1,5, 1;1) = Gp(z122 - - - 2,27 ()

were considered in [24] (and denoted by F(r,s,c,n)). Of course, they are further
generalizations of the groups F(r,n) and F(r,n, k). In [24] the authors determined
necessary and sufficient conditions under which the abelianized group of F(r, s, ¢,n)
is finite. These conditions will be extended for more general groups of Fibonacci
type in Section 5, in order to study connections between cyclic presentations and
higher dimensional knot groups. The family F(r,s,c,n) of cyclically presented
groups contains the generalized Neuwirth groups

It = Gp(z1my - 2p12,®) = F(n— 1,n — 1,k,n)

which were discussed and geometrically studied in [40]. The groups I'® are funda-
mental groups of closed connected orientable 3—manifolds My, (k) which are homeo-
morphic to Seifert fibered spaces (see [40]). Moreover, the Seifert invariants of these
fibered spaces are completely determined in the quoted paper. As a consequence,
the groups I'* = F(n — 1,n — 1,k,n) are non-hyperbolic.
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(6) The groups

r—1 s—1
Gn(k—1,1;q,¢;7,81) = Gn((H $1+jq)(H xk+jq)_1)
3=0 §=0

were defined in [31] (and denoted by P(r,n,k,s,q)). These groups contain for
example the generalized Sieradski groups, which are non-hyperbolic. In [31] the
author studied the asphericity and the atoricity for this class of groups and some
other classes of symmetrically presented groups.

(7) The groups
Gn(k,1;h,152,151) = Gn (212140271 5)

were introduced in [9] (and denoted by G, (h,k)). They are natural generalizations
of the Gilbert-Howie groups H(n, h) defined in [17] as

H(n, h) = Gn(.’ltliﬂl_;_hl‘g-l) = Gn(h, 1).

Obviously, we have G,(2,1) = S(n) and Gn(1,2) = F(2,n). Some algebraic and
topological properties of the groups Gp(h, k) will appear in a forthcoming paper
of Bardakov and Vesnin (as announced by the second author during a talk held at
the University of Modena in March 2001). In particular, they will prove that if n
is odd and coprime with h — 2k, and h — k is even, then G, (h,k) cannot be the
fundamental group of a closed connected hyperbolic 3-orbifold of finite volume.

(8) The groups
Gn(n—1,k;1,1;n,1;4) = Gp((z122 - --mn)lfc_k)

were defined and geometrically studied in [34] (and denoted by I'(k,...,k;{) for
any £ > 1 and k > 2). The authors proved that the groups I'(k,...,k;¢) (and
some further generalizations of them) are fundamental groups of closed connected
orientable 3—manifolds M, (k;¢). The class of manifolds of type M, (k;¢) contains
the generalized Neuwirth manifolds discussed in (5) which are homeomorphic to
M,(k + 1;1). As proved in [34], the manifold M, (k;¢) is homeomorphic to the
Seifert fibered 3-manifold Y(k;£) defined by the Seifert invariants

YX(k; ) =(000: -1 (k,1)---(k,1) (£,€-1)).
———
n  times
In particular, these groups are non-hyperbolic. We consider again the fibered ma-
nifolds M, (k; £) in Section 4, and prove that they are homeomorphic to n-fold cyclic
coverings of lens spaces (in particular, the 3-sphere whenever a certain condition on

the parameters is satisfied) branched over genus one 1-bridge knots. The proof is
based on algebraic and geometric arguments and involves the split extension group

of T'(k, ..., k; ).
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3. Non-hyperbolic Groups

In this section we shall apply some techniques developed in [26], [36], and [39] to
the groups arising from our family of cyclic presentations. This allows us to prove
that, under certain conditions on the parameters, these groups -are non-hyperbolic.
More precisely, we obtain the following result:

Theorem 3.1. Suppose that the number n (n > 3) of generators is odd and coprime
with 2h + q(s — 1) — p(r — 1), and that one of the following conditions is satisfied:

i) either r or £ is even, and k and s are odd; or
il) either s or k is even, and £ and r are odd.

Then the cyclically presented group
r—1 s—1
Gn(h> k7p7 q;7, S e) = Gn((H "EH-J'p)E (H x1+h+jq)_k)
j=0 §=0

cannot be the fundamental group of a closed connected hyperbolic 3-orbifold (in
particular, 3-manifold) of finite volume.

Proof. Suppose conversely that G, = G,(h, k;p,q;r,s;£) is an hyperbolic group,
and let Isom(H3) denote the group of isometries of the hyperbolic 3-space H?3.
Then there is a faithful representation 7 from G, into Isom(H3) such that the
image I';, = v(G) is a discrete group of finite covolume. Of course, I',, admits an
automorphism « of order n which cyclically permutes the generators, also denoted
by zi, ..., T,. By the Mostow rigidity theorem (see for example [2] and [42]) there
exists an isometry ¢ € Isom(H?3) such that a(g) = tgt~! for any element g € I',.
Let H, be the split extension group of I',, by the cyclic group generated by the
isometry t. Then H,, is isomorphic to the fundamental group of a closed hyperbolic
3-orbifold of finite volume. Since « has order n, it follows that t® commutes with
all elements of I',,, i.e., t™ belongs to the center of I',,. This implies that t* = 1
because every non-elementary Kleinian group has trivial center (see for example
[1]). Thus we obtain ¢" = 1, hence ¢ is of order n;, where n; divides n. Now we
substitute the relation
Ti41 = ti.’l,'lt_i
into the initial relation of T',,:
(T1Z14p - $l+p(r—1))£ = (T14h - $1+h+q(s—l))k-
Then we get the relation
((371 tp)r t~pr)€ — (th (,1:1 tq)s t_h_qs)k.
Of course, H,, has the finite presentation

H,=<zy,t: t"=1((z1?)"t7P") = (" (x, 1)t )k > |
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Let us consider the group generated by the finite products of the squares of the
elements in H,, i.e.,
H® =<y :neH, >.
Since n is odd, it follows that n; is odd, hence ¢t € H,(Lz). If one of the conditions
of the statement is satisfied, we get 1 € Hp (2 by using the second relation of Hy,.
Thus we have H,, = HE ), hence H, is a subgroup of the group of orientation—
preserving isometries of H3. Therefore we set H, < PSL(2;C). Let us denote by
PA the image in PSL(2;C) of a matrix A € SL(2;C) under the 2—fold covering
P :SL(2;C) — PSL(2;C) = SL(2; C)/{%I2}. Since t is of order n;, we can assume
without loss of generality that
e 0
t=p ( ¢ w_l)

where ¢ is a (primitive) root of unity (in C) of order 2n;. Furthermore, we set

w-r( )

where zw — yz = 1, and yz # 0 because I',, has finite covolume. Substituting the
matrices in the second relation of H,, we get

zop g\ (o7 0 )Y
2P wpTP 0 P
([ 0N [z oy (e 0 )\
0 o) \zp? wp? 0 phtas :

It was proved in [39] by induction on j that

- %)

Cc
where
Sj+1 a 0 bc Sj
T7'+1 = 0 d bc TJ
Rjp 1 0 d) \R,
with
Sl a
T, | =1|d
Ry 1

Applying this formula to our case, we get

S yp PR\ [T ¢
2P R, T <p’""
s 0 Se we R (¢t 0 \\"
0 o) \20R, T, 0 phtas

©7P"S,  ypPT PR, ¢ 958, y¢2h+q(s—1)Rs k
<Z<Pp_err P T, ) = <z<p”2h*q<s_1)Rs 09T, )

hence
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Finally, we have

Se _ ye"PRp) _ Sk yptttaeTUR,
2P TRy T 2 2h=as-DR,, T,

where Ry = R,Ry and Ry = R Ry. Therefore, we obtain

y(pp'r—pﬁe = y(p2h+Q(S_1)~_R—k
Since yz # 0, we get
Q02h+q(s—l)—p(r—l) — (P—Zh—q(s—l)—l—p(r—l)

and so
(p2(2h+q(s—1)—P(7‘—1)) =1.

Now ¢ is a primitive root of unity of order 2n; and n (and hence n;) is coprime

with 2h+g(s—1) —p(r—1). This gives a contradiction, so the proof is completed.0d

As one can easily verify, Theorem 3.1 includes all results on non-hyperbolicity
of groups of Fibonacci type with an odd number of generators proved in [26], [36],
and [39], and summarized in Section 2. Moreover, we obtain further consequences
concerning some groups discussed in Section 2.

Corollary 3.2. Suppose that r+ k (> 3) is odd, and n (> 3) is odd and coprime
with r + k. Then the Campbell-Robertson group

H(r,n,k) = Gp((z122 - - - ) (T14r - Tpgr) )

cannot be the fundamental group of a hyperbolic 3—orbifold of finite volume.

In particular, for kK = 1, we get the main theorem of [36] on non-hyperbolicity
of the Fibonacci groups F(r,n) with an odd number of generators.
Corollary 3.3. Suppose that ¢+ (> 3) is odd, and n (> 3) is odd and coprime
with 2s — r + 1. Then the Johnson—-Odoni group

F(r,s,c,n) = Gn(z122 - - - T, T )

cannot be the fundamental group of a hyperbolic 3-orbifold of finite volume.

In particular, for ¢ = 1 and s = r + k — 1, we get the main theorem of [39]
concerning with the non-hyperbolicity of the generalized Fibonacci groups F(r,n, k)
with an odd number of generators.

Corollary 3.4. Suppose that T+ s (> 3) is odd, and n (> 3) is odd and coprime
with 2(k — 1) + q(s —r). Then the Prishchepov group

r—1 s—1
P(r,n,k,5,9) = Ga(([ [ #1140) (] [ #5450 ™"
j=0 3=0

cannot be the fundamental group of a hyperbolic 3—orbifold of finite volume.
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Corollary 3.5. Let n (> 3) be odd and coprime with 2k — h. Then the
group Gp(h, k) = Gn($1$1+h$1_ik) cannot be the fundamental group of a hyperbolic
3-orbifold of finite volume.

4. Split Extensions and Orbifold Groups

In this section we show that the split extensions of some groups discussed in
Section 2 are very interesting from a topological point of view. In fact, they are
fundamental groups of some 3-dimensional orbifolds. First, we consider the group
I'(k,...,k;£), introduced in [34], (see (8), Section 2), and denote it by 'y (k;£), i.e.,

Tp(k;0) = Gn((z122 - - - )2 %)
=(Z1,...,Zn : (TiTit1- --31:14_”_1)z = a:f_i_n_l, i=1,...,n)
where n > 2, k > 2, and £ > 1. In the case £ = 1, the group I',(k + 1;¢) coincides
with T of [40]. Let us denote by H,(k;£) the split extension group of T',(k;£) by
Zn = (t: t™ = 1), where t is the automorphism given by #(x;) = x;41 (subscripts

mod n). From Section 3, H,(k;¢) has a finite presentation with generators ¢ and z
and relations t™ =1 and v(¢,z) = 1, where

vt ) = (@)t ([ (at)e= D=1 7F
asp=q=s=1,r=n,and h =n— 1. Therefore, H,(k;{) admits the following
presentation

H,(k;0) = (z,t : t" =1, (zt)™ =t"1zFt).
Setting y = zt, we get the presentation

H,(k;0) = (z,y : (= 'y)" =1, y™ =)

Suppose now that nf — k = 41. Observe that the group (z,y : y™ = z*) is the
group of the torus knot T'(nf, k), and z~'y represents its meridian. Denote by
O(T(nt,k),n) the orbifold whose underlying topological space is the 3-sphere S3
and whose singular set is the torus knot T'(n¢, k) with singularity index n. Thus we
have proved the following result.

Theorem 4.1. Ifnl—k = £1, then the split extension group H,(k;€) of Tn(k;€) =
Gn((z12o - - - ) %) is the fundamental group of the 3-dimensional fibered orbifold
Oo(T(nd, k), n).

As proved in [34], T'n(k; ) is the fundamental group of the orientable Seifert
fibered 3-manifold M, (k;£) (see (8), Section 2). The following result describes the
manifolds M, (k; £) as cyclic branched coverings of lens spaces.

Theorem 4.2. The Seifert fibered manifold My, (k;£) is an n—fold cyclic branched
covering of the lens space L(nd — k,1) (in particular, S' x S* when nl = k). If
nl = k + 1, then M,(k;£€) is the n—fold cyclic covering of the 3—-sphere branched
over the torus knot T'(nf, k), i.e., My(k;£) is the Brieskorn manifold M (nt, k,n) in
the sense of [28].
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As a consequence of Theorem 4.2, the commutator group of the centrally ex-
tended triangle group [28] with parameters (k=+1, k,n) admits a cyclic presentation.
To prove Theorem 4.2, we briefly recall the combinatorial construction of My, (k;£),
given in [34], by pairwise identification of oppositely oriented boundary faces of a
polyhedral 3-ball B3. Let P,(k;£) be the cellular decomposition of B shown in
Figure 1 (case n = £ = 3 and k = 4), where left and right boundaries are assumed
to be identified. It consists of 2n faces labeled by A; and A;, which are (k+nf—2)-
gons. The labeling of the edges of P,(k;f) and their orientations are shown in
Figure 1. Identifying A; with A; for any i = 1,...,n yields the manifold M, (k;¥¢)
(for details see [34]).

Figure 1. The polyhedron P, (k;£) = P3(4;3)

Rotation by an angle 27 /n about the north-south axis N'S defines an action of
the cyclic group Z, on M,(k;{). The quotient space M,(k;£)/Zy, is obtained by
taking a fundamental domain II(k; £) for the action and making identifications (see
Figure 2 (a)). A Heegaard diagram for this quotient space is pictured in Figure 2
(b). From the diagram one can easily see that the quotient is topologically the lens
space L(nf — k,1). Note that Ty(k;£) =<z : 2™ % =1>2 7, 4.
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(a) The fundamental domain II(k; £) (b) A Heegaard diagram for

for the action of Z,, on My (k;£) the quotient My (k;¢)/Zn

(case k=4 and £ = 3) (case k =4 and £ = 3)
Figure 2

If nf — k = £1, then My (k;£)/Zy, is homeomorphic to the 3-sphere (see Figures
3 and 4). The axis of the rotation is drawn in Figure 4 (a) as a dotted curve. It
lies below the diagram, inside the ball whose boundary is being identified along the
disc pair (A*, A™). Now we apply the method used in [22] for the figure-eight knot
to our case, and modify Figure 4 (a) to Figure 5 (a) by simplifications along closed
curves and cancellations of handles. Figure 4 (b) is obtained from Figure 4 (a) by a
simplification along the closed simple curve B (also called the Whitehead-Zieschang
reduction). Figure 4 (c) is obtained from Figure 4 (b) by a simplification along the
closed simple curve C. It is also a Heegaard diagram for the quotient space, that
is the 3—sphere. Figure 5 (a) is obtained from Figure 4 (c) by a cancellation of
handles. By using Reidemeister moves, it is easy to see that the knot pictured in
Figure 5 (a) is the torus knot T'(n¢,k) = T'(4,3). This completes the proof of
Theorem 4.2. O
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(a) The polyhedron Py (k;£) = P»(3;2) (b) The fundamental domain
II(k; €) = 11(3; 2)
Figure 3

@

Figure 4. A Heegaard diagram for the quotient My (k; £)/Zs = S% (case k = 3 and £ = 2)
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B.

() ®

Figure 5. A sequence of Reidemeister moves yielding the torus knot T'(n¢, k) = T'(4, 3)



256 A. Cavicchioli, D. Repovs & F. Spaggiari

Now we consider the Prishchepov group

r—1 s—1
P(T) n, h+ 17 S?p) = Gn(ha lvpapv T, 85 1) = GTL((H $1+J'P) (H x1+h+jp)_1)
=0 =0

where n > 2, r > s > 1, and p, h > 1. Recall that this class of cyclic presentations
contains in particular the generalized Sieradski groups. Suppose that h = +1 (mod
n), and p(r — s) = 2h (mod n). Let H, = Hp(r,n,h+1,s,p) be the split extension
group of P(r,n,h +1,s,p) by Z, =<t : t" =1 >, where t is the automorphism
given by t(z;) = x;41 (subscripts mod n). By Section 3, H,, has a finite presentation
with generators ¢ and z, and relations t™ = 1 and

(ztP)" 7P = th(xtP)St=hPs

as k ={ =1 and p = q. The algebraic conditions on the parameters imply that H,
admits the following presentation

Hy,=<zt: t"=1, (atP)" =t"(xtP)t MPr=o) >
=<z,t: t" = 1, (xtp)r — th(xtp)sth S
=<uz,t: t"=1, (mtp)7'+s _ ((mtp)st:i:l)Z S .

We set y = ztP and 2z = (2tP)*t*!. These relations are invertible, i.e., we can express
z and t in terms of y and z. In fact, we have t*! = y~*z and z = y(z~!y*)*P. So
the group H,, admits the finite presentation

H,=<y,z: (y*2)"=1, y"T=22>.

Suppose moreover that r+ s is odd. Recall that the group of the torus knot T'(«, 8)
has the finite presentation < y,z : y® = 28 >. Since o and 8 are coprime, there
exist integers ¢ and 7 such that o — fn = 1. We can always choose the path
m = 3y~ "2% as a meridian of T(a,8). In our case, we have a = r + 5, 8 = 2,
€=1,andn = (r+s—1)/2, 50 we get m = y~("+5=1/2; Let us denote by
O(T(r +s,2),n) the 3-dimensional orbifold whose underlying space is the 3-sphere
and whose singular set is the torus knot T'(r + s,2) with singularity index n. We
have proved the following result.

Theorem 4.3. If h = £1 (mod n), p(r — s) = 2h (mod n), and r + s is odd, then
the split extension of the Prishchepov group P(r,n,h + 1,s,p) is the fundamental
group of the fibered 3-orbifold O(T(r + 5,2),n). O

If h = £1 (mod n), p(r — s) = 2h (mod n), ged(r,s) =1 and r + s is odd, then
the Prishchepov group P(r,n,h+1,s,p) (n > 2,7 > s > 1, and h, p > 1) is the
fundamental group of a closed connected orientable 3—manifold which we denote by
M, = M(r,n,h+1,s,p). To construct M,, we use the face identification procedure.
Let us consider a tessellation @, = Q(r,n,h + 1, s,p) on the boundary of a 3-ball,
which consists of n (r + s)-gons R; in the northern hemisphere and n (r + s)-gons
R; in the southern hemisphere. The edge labels and their orientations are obtained
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as depicted in Figure 6 for the tessellation Q(8,4,2,3,2). For each ¢ the boundary
cycle of the (r 4 s)-gons R; and R; is given by the sequence

TiTitp - Tigp(r—1)(T14n - 331+h-|-p(s—1))_1

where the subscripts are taken modulo n. Now we identify the faces R; with R;
so that the corresponding oriented edges carrying the same label match well. The
resulting complex is a closed orientable 3-manifold M,, = M(r,n,h + 1,s,p). Ro-
tation by an angle 27 /n about the north-south axis N.S defines an action of Z,, on
the manifold M,. The quotient space My /Z, is homeomorphic to the lens space
L(r — s,s). One can construct a Heegaard diagram of it from a fundamental do-
main II(r,n, h+1,s,p) of the action (see Figure 7). The algebraic conditions on the
parameters permit to make the edge identifications coherently, and to construct an
admissible Heegaard diagram for the quotient space.

Figure 6. The polyhedron Q(r,n,h +1,s,p) = Q(8,4,2,3,2)

If further s = r — 1, then the quotient space is homeomorphic to the 3-sphere as
shown in Figure 8 for the tessellation Q(4,4,2,3,2). A Heegaard diagram for this
quotient space is pictured in Figure 9 (a). The axis of the rotation is drawn, as usual,
as a dotted curve. Figure 9 (b) is obtained from Figure 9 (a) by a simplification along
the closed curve V. Figure 10 (a) is obtained from Figure 9 (b) by a cancellation of



258 A. Cavicchioli, D. Repovs & F. Spaggiari

handles. It is easy to see by Reidemeister moves that the knot pictured in Figure
10 (a) is the torus knot T(7,2) = T'(2r — 1,2). So we have the following result.

Theorem 4.4. If h = +1 (mod n), p(r — s) = 2h (mod n), ged(r,s) = 1 and
r + s is odd, then the Prishchepov group P(r,n,h + 1,s,p) (1 < s < 7 —1,
p, h > 1, and n > 2) is the fundamental group of a closed connected orientable
3-manifold M, = M(r,n,h+ 1,s,p) which is an n—fold cyclic covering of the lens
space L(r — s,8). If further s = r — 1, then M, is the n—fold covering of the 3—
sphere branched over the torus knot T'(2r —1,2), i.e., My, is the Brieskorn manifold
M(2,2r —1,n). O

(a) The fundamental domain (b) A Heegaard diagram
11(8,4,2,3,2) for the quotient
M(r,n,h+1,8,p)/Zn =
L(r — s,s) (case 7 = 8,
h=1,s=3andp=2)
Figure 7
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@) ()

Figure 9. A Heegaard diagram for the quotient M (r,n,h + 1,s,p)/Zn = S3
(caser=4,h=1,s=3and p=2)
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(2) (b)

r\j T(7,2)

©
Figure 10. A sequence of Reidemeister moves yielding the torus knot T'(2r — 1,2) = T(7,2)

As a consequence, we obtain isomorphisms between Prishchepov groups for dif-
ferent values of h and p, and fixed n and s = r — 1 (satisfying conditions above).
Finally, it follows that the commutator group of the centrally extended triangle
group [28] with parameters (2,2r — 1,n) admits a cyclic presentation.

5. HNN Extensions and Knot Groups

One of the first question in knot theory is which abstract group is an m-knot
group, i.e., the fundamental group of the complement of an m-dimensional knot in
the (m + 2)-sphere. For m > 3, Kervaire gave necessary and sufficient conditions
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to solve the above question (see for example [32], Section 11D). More precisely,
a group G is a 3-knot group (and so, an m-knot group for any m > 3) if and
only if G is finitely presentable, H1(G;Z) & Z, H>(G;Z) = 0, and G has weight
1 (that is, G is the normal closure of some single element). It is well-known that
these conditions are necessary but not sufficient in dimension n < 2. Recently,
Szczepaniski and Vesnin [41] have obtained conditions for which the natural HNN
extension of a cyclically presented group is the group of an high—dimensional knot.
We briefly recall their result which is based on Kervaire’s characterization. Let
Gr(w) be a cyclically presented group with generators zi, ..., =, and relations
w = f(w) = -+ = " }(w) = 1, where 6 is the automorphism of G, (w) given by
0(z;) = x;4+1 (subscripts mod n). Following [41], we say that the defining word w is
admissable if |f,(1)| = 1, where f,,(t) is the polynomial associated to G, (w). Let
Gn(w) denote the natural HNN extension of G, (w), that is,

Gn(w) =< Gp(w),t: tigt= 0(g), g € Gp(w) >.

Suppose that the abelianized group of G, (w) is finite, or, equivalently, that f,,(t)
has no roots in common with " —1 (see [24]). Under this assumption, it was proved
in [41] that G, (w) is an m~knot group, m > 3, if and only if w is admissable. In
particular, the natural HNN extension of the Fibonacci group F(r,n) is a 3-knot
group if and only if r = 2 (see [37] for the proof). A similar result was also proved in
[38] for the class of fractional Fibonacci groups F*/¢(2,n) = G, ((zéz5z3*)). More
precisely, the natural HNN extensions of these groups are high—-dimensional knot
groups if and only if £ = 1. The present section is devoted to construct a new
class of high—dimensional knot groups arising from the cyclic presentations defined
in Section 2. To prove our results we apply the main theorem of [41], cited above,
and some algebraic methods developed by Johnson and Odoni in [24] and [30].
Let us consider the cyclically presented groups

r—1 s—1
Gn(hv k;’p7p7 Ty 83 6) = Gn((H x1+j;0)e (H m1+h+jp)—k)7
=0 =0

wheren > 2,7 > 2,5 > 1, h,k,p,{ € Z and £ # 0. The polynomial f,,(t) associated
to the word

r—1 s—1
w=([]21450)" (J] 214n1s0) 7"
§=0 §=0
or, equivalently, to
r—1 s—1
— ¢ —
0" (w) = ([ z0) ([ ztsp)™*
=0 =0
is

Fult) = 63 6%) K 07)
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and hence

for t» —1#0.
We seek necessary and sufficient conditions for the parameters under which f,,(t)
vanishes on an n-th root of unity. First we consider five cases.
case (i): ks = r{. Then f,(1) =0.
case (ii): k = 0, ged(pr,n) = a > 1, and a does not divide p. Then f,(t)
vanishes on a primitive a-th root of unity.
case (iii): k = %{ and there exists m € Z, m > 1, such that m divides n but
does not divide ps, p(s —r) = 0 (mod m), and either A = 0 (mod m) and k = £
or h = m/2 (mod m) and k = —¢, with m even in the second case. Then f,(t)
vanishes on a primitive m-th root of unity.
case (iv): k= (—1)*2¢, h = ps(1 + 3u), r = 3s (mod 6s), and n =0 (mod 6ps).
If X is a primitive (6ps)-th root of unity, then
3PS — 1 s ps3psu AP — 1
fw(X) = eﬁl_ — (=1)%2exPe NP SV
-2 e oS WA =1
w1 (=1)"26XP%(-1) w1
_—2£(1 — APS 4 \2P9)
= 1 =
In fact, A6° = 1 implies (A3P% + 1)(A%P* — 1) = (A%P¢ + 1)(—2) = 0. But we have
(A%P 1) = (APS + 1)(A%P5 — \PS 1), and N\PS #£ —1.
case (v): k = x££ and there exists m € Z, m > 1, such that m divides n but does
not divide ps, p(r + s) = 0 (mod m), and either A + ps = 0 (mod m) and k = —¢
or h+ps=m/2 (mod m) and k = £, with m even in the second case. Then f,(t)
vanishes on a primitive m-th root of unity. In fact, for the first case we have
Ah -1 pATP =1 LM —14+1- 2
L Vs T e A —1

while in the second case

=/

=0,

ArA—m/2 1 pATRAM/2
fo) = =3~ X — 1
it S S
¥ —1 P —1
L= =14140)
2 —1 -

0.

Theorem 5.1. The abelianized group of G, (h, k;p, p;r, s;£) is infinite in the above
five cases, and finite otherwise.

Theorem 5.1 together with the main result of [41] gives a new class of examples
of high—dimensional knot groups.
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Theorem 5.2 Suppose that conditions (i)-(v) are not satisfied. Then the natural
HNN extension of the group G, (h, k;p,p;r,s;£) is a m-knot group, m > 3, if and
only if rf — ks = £1.

Proof of Theorem 5.1. We have to prove only the second assertion so we assume
that ks # rf (case (i)). If k = 0 and ged(pr,n) = 1, then f,(¢) does not vanish on

an n-th root of unity. In fact, suppose conversely that A is a primitive n-th root of
unity with f,,(A) = 0. It follows that n does not divide p; otherwise, we have

r—1
FuX) = £ NP) =tr #0.
7=0
Since 3 _1
fw()\)zf)\p_l =0,

we obtain AP" = 1, and so A = 1 because gcd(pr,n) = 1. This gives a contradiction.
If £ =0, ged(pr,n) = a > 1 and a divides p, then f,,(t) does not vanish on an n-th
root of unity. In fact, if \* =1 and f,,(\) = 0, then n does not divide p, as above.
But f,,(A) = 0 implies that A\P" = 1, hence n divides pr. This gives a = n, where
a divides p, that is, a contradiction. Thus we may also assume that k # 0 (case
(ii)). Now let A be a primitive m-th root of unity, m > 1, such that m divides n
but does not divide ps, and f,,(A) = 0. Then we claim that the parameters satisfy
the conditions in cases (iii), (iv) or (v). From f,,(A) = 0, we obtain

NPT — 1) = kAP (AP - 1) (5.1)
hence
k h r k h+p(s—r)
—é)\ -1=\N (Z)\ P -1). (5.2)
Since |A| = 1, we get
k.n K hap(s—
i —~1 == +p(s—r) _ i
S (5 1

Since % # 0, we have
)\h—{—p(s—r) — Aﬂ:h.

If AP+P(s=m) = \P then \?(~") =1 50 p(s — ) = 0 (mod m). It follows from (5.2)

that

kh _pskh
A= 1= (- 1)

hence "

(Z’\h —1)(WP* —1) =0.
But AP® #£ 1 because m does not divide ps, so we get %)\h = 1. This implies that
% = 41 = A\*, which gives case (iii). There remains the possibility that

)\h,-i—p(s—r) —\"h

which we have to reduce to cases (iii), (iv) or (v). Thus we have AP" = A\2"+Ps and

)\2h+ps -1 _

k
SV Z’\h (5.3)



264 A. Cavicchioli, D. Repovs & F. Spaggiari

using (5.1) with % ¢ {0,Z}, and m = ord(\) > 1, m\n, m does not divide ps.
Suppose now £ s +1, and let ord(A?*) = e\m and ord(A\*"*P*) = d\m. Using a
nice argument from [24], we take norms from Q(\) to Q in (5.3), so we get

é(m)
By qypoim) _ (2a(1) 5
(pemayrem) = Sl D 5.4
(®e(1))?@
where @4 is the d-th cyclotomic polynomial and ¢ is the Euler totient function.

Now let ¢ be a prime which divides %, ct\% say. Then c divides ®4(1) by (5.4)

which implies that d = ¢, n > 1, and ®4(1) = ¢. Comparing powers of ¢ in both
sides of (5.4) we have

¢(m)
td(m) < 2.
™ 5@
This forces ¢ = 1 and ¢(d) = 1. Since d = ¢", it follows that ¢ = 2 and 5 = 1, hence

k = 4+2¢ and A\?"*+Ps = —1. Substituting into (5.3) yields
2 = £2\"(1 — \P?). (5.5)

Squaring this gives 4 = 4\2"(1 — AP*)2 that is A?P* — \P* + 1 = 0, so we obtain
e = ord(A\?°) = 6, and m = ord(\) = 6ps. It now follows from (5.5) that h = ps
(mod 3ps), h = ps(1 + 3u) say, and that

sgn(—];) = APS)3PSU(] _ \PS) = \PS(1 — \P)(—1)"
that is
)t sgn(%) = APS(APS — 1) = NP5 — NP = ],

(-1
hence sgn(%) = (—1)%. So AP("=%) = A" and 2h = 2ps+6psu imply AP("%) = \2Ps
hence p(r — s) = 2ps (mod 6ps), that is, r = 3s (mod 6s). This yields case (iv).
Suppose now AP" = A?"*Ps and £ = +1. Substituting into (5.1) yields

s 1 = s -1

which implies A2P+Ps = \EPps,

If A2h+Ps = \P$ then A\?* =1 s0 2h =0 (mod m), and \* = +1. From 2h =0
(mod m) we get AP" = AP*, so p(r — s) =0 (mod m). This gives again case (iii).

If A27+Ps = \~Ps then A\2/+2Ps = 1 50 2h +2ps = 0 (mod m), and \P+P¢ = £1.
Hence h + ps is congruent to either 0 or m/2 (mod m), with m even in the second
case. Of course, if \P" = M\2P+Ps = \~Ps and A*+PS = +1, then f,()\) = 0 if and
only if k = —(41)£. Finally, from AP" = A~P5, we get A\?("+$) = 1 hence p(r+s) =0
(mod m). This gives case (v). O

Rewriting conditions (i)—(v) for the classes of cyclic presentations listed in Sec-
tion 2 produces a lot of corollaries. For example, we immediately re-obtain that
the Fibonacci groups F'(r,n) have a finite abelianization, as it is well-known [23].
Using Zeeman’s twist spun construction of knots [43], our results imply the following
consequences.
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Corollary 5.3. The abelianization of the generalized Sieradski group S(r,n), r > 2,
is infinite if and only if n = 0 (mod 4r — 2). If 4r — 2 does not divide n, then
the natural HNN extension of S(r,n) is a fibred 2-knot group with the Brieskorn
manifold M(2,2r — 1,n) as closed fibre.

For r = 2, the first part of the statement was proved in [24].

Corollary 5.4. The abelianization of the Campbell-Robertson group F(r,n, k),
where r > 2, n >3 and k > 1, is infinite if and only if there exists m € Z, m > 1,
m\n such that either k =0 (mod m) and r =1 (mod m) or k =1+ m/2 (mod
m) and r = —1 (mod m), with m even in the second case. If the abelianization is
finite, then the natural HNN estension of F(r,n,k) is a 3-knot group if and only if
r=2.

For k = 1, the last part of the statement was proved in [37].

Corollary 5.5. The abelianization of the Campbell-Robertson group H(r,n, k),
wherer > 2, n >3, and k > 1, is infinite if and only if k = r. In the case k # r,
the natural HNN extension of H(r,n,k) is a 3-knot group if and only ifr =k £+ 1.

For the Johnson—-Odoni group F(r, s, ¢, n), conditions (i)—(v) become the follow-
ing sentences (also denoted by the same labels):

case (i): c=r

case (ii): ¢ =0 and ged(r,n) =a > 1

case (iii): ¢ = %1, and there exists m € Z, m > 1, m\n, with 7 = 1 (mod m)
and either s = 0 (mod m) and ¢ =1, or s = m/2 (mod m) and ¢ = —1, with m
even in the second case

case (iv): ¢ = (-1)*2, s =14 3u, r =3 (mod 6) and n =0 (mod 6)

case (v): ¢ = =1, and there exists m € Z, m > 1, m\n, with » = —1 (mod m)
and either s = —1 (mod m) and ¢ = —1, or s = —1+m/2 (mod m) and ¢ = 1, with
m even in the second case.

We remark that cases (i)-(iv) are exactly those presented in [24], while case (v)
was not considered in that paper. So the first part of the next corollary completes
Proposition 4.2 of [24].

Corollary 5.6. The abelianization of the Johnson-Odoni group F(r,s,c,n), where
r>2,n2>2 sc¢€7Z, is infinite in the above five cases, and finite otherwise. In
the finite case, the natural HNN extension of F(r,s,c,n) is a 3—knot group if and
onlyifr=c+1.

For the Prischepov group P(r,n,k, s, q), conditions (i)—(v) reduce to only three
cases (denoted by the same corresponding labels):

case (i): s=7

case (iii): there exists m € Z, m > 1, m\n, m does not divide gs, with ¢s = ¢r
(mod m), and k =1 (mod m)
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case (v): there exists m € Z, m > 1, m\n, m does not divide gs, with gs = —gr
(mod m), and k + gs =1+ m/2 (mod m), m even.

Corollary 5.7 The abelianization of the Prischepov group P(r,n,k, s, q) is infinite
in the above three cases, and finite otherwise. In the finite case, the natural HNN
extension of P(r,n,k,s,q) is a 3—-knot group (resp. 2-knot group if the hypothesis
of Theorem 4.4 are satisfied) if and only if s=r £ 1.

In particular, if s = 7 — 1, then P(r,n,k,s,q) has infinite abelianization if and
only if n = 0 (mod ¢(2r—1)) and 2(k—1) = g (mod ¢(2r —1)). If further k = ¢ = 2,
then these conditions reduce to that in the statement of Corollary 5.3.

Now let us consider the group G, (h, k) = Gn(x1x1+hx1'ik) which can also be
regarded as G (k, 1; h, h;2,1;1). From Theorems 5.1 and 5.2 we have

Corollary 5.8. The abelianization of the group Gp(h, k) is infinite if and only if
n=0 (mod6), k+h =3 (mod6), and 3h =0 (mod 6). In the finite case, the
natural HNN extension of Gn(h, k) is a 3-knot group.

For k =1, G,(h, k) coincides with the Gilbert—-Howie group H(n,h). So Corol-
lary 5.8 immediately implies that H(n,h) has infinite abelianization if and only if
n =0 (mod 6) and h =2 (mod 6). This is a well-known result, proved by Odoni in
[30].

Finally, the group Iy (k;£) = Gn(n — 1,k;1,1;n,1;£) has finite abelianization
if and only if £ # nf and k # 0. In fact, the abelianized group is isomorphic
to ZZ‘Q ® Zg|k—ne|, as one can directly verify by standard computations on the
circulant matrix having the generator exponents as entries. So we have

Corollary 5.9. If k # nf and k # 0, then the natural HNN extension of T'n(k;¥)
is a fibred 2-knot group (with the Brieskorn manifold M (nf, k,n) as closed fibre) if
and only if n =k £ 1.
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