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Abstract

We have collected several open problems on graphs which arise in geometric topology, in
particular in the following arcas: (1) basic embeddability of compacta into the plane R*: (2) ap-
proximability of maps by embeddings; (3) uncountable collections of continua in R~ and their
span; and (4) representations of closed PL. manifolds by colored graphs. These problems should
be of interest to both topologists and combinatorists. © 1998 Elsevier Science B.V.

Kevwords: Basic embedding: Tree: Width: Symmetric span; Chainability: Continua; -disjoinable
graphs: Isotopy: Van Kampen's obstruction; Approximability by embeddings
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1. Introduction

A well-known Moore’s theorem on triods states that there are no uncountable collec-
tions of pairwise disjoint (homeomorphic) copies of the letter T in the plane [36]. This
theorem was subsequently widely generalized [1.4.8,38,41,42.47.57|. Proofs of these gen-
eralizations include a reduction to their graph analogues. These analogues are interesting
elementary theorems concerning the narrowness properties of trees in the plune. Among
them is the following generalization of Konstantinov’s Fatties Theorem (a short proof is
sketched in Section 2):
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Theorem 1.1 [42]. Suppose that K € R® is a tree and @ € B is u vector such that
KN(K+ad) = 0. Then two fatties (i.e., round disks of diameters @!) cannor exchange their
positions, by moving their centers on K continuously and not intersecting each other.

In the solution of Hilbert’s 13th problem [3,24], the notion of a hasic embedding
appeared for the first time. In particular, an embedding K C IR is said to be basic. if for
every continuous function f: A — R there exist continuous functions ¢. h : R — R such
that f(:r. y) = g{a)+h(y), forevery pair (., ) € K (we assume that R? is endowed with
a fixed Cartesian coordinate system). This is equivalent to a certain elementary geometric
property [51] (see Section 3). Thus the description of graphs, basically embeddable in
R2, can be reduced to an elementary prcblem, concerning a certain linear property of
trees in the plane. It turns out that finite graphs, basically embeddable in the plane, have
a simple description in the spirit of Kuratowski's description of planar graphs [27] (a
short proof of PL-embeddings of graphs is sketched in Section 3).

Theorem 1.2 [49]. A finite graph I\ is hasically embeddable in R if and only if it does
not contain any of the following three graphs: a circle S, a pentod P or a cross (" with
branched ends (see Fig. 1) (on equivalentiy, if it is contained in 'V,,. for some n, see
Fig. 2).

A classical problem in topology is to describe compacta, embeddable in the plane.
Such a description for graphs and Peanian continua was given by Kuratowski and Clay-
tor [15,27] (see also [50.56]). Using the inverse limit techniques. embeddability ot com-
pacta can be reduced, roughly speaking. o embeddability of maps of graphs (see the
definition in Section 4) [46,48]. This concept generalizes:

(1) ordinary embeddability of graphs in R*;

(2) embeddability of graphs in R? with two vertices *close together” or with a given

cycle bounding a face [53]; and

(3) isotopness of different embeddings of a given graph in R-.

Examples show that this notion is rather geometric and interesting in itself. For the
general case there are apparently no geometric descriptions (in the spirit of Kuratowski)
of maps. embeddable in X2, But for this problem, an analogue of van Kampen's obstruc-
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tion {f) € Hi(f{.[;") and a difference element w(f) € Hkl’-([:'/v) (cf. [40]) can be
introduced (see Section 4).

Theorem 1.3. If a PL-map [: I — R~ is approximable by embeddings then:
(a) V(f) =0 and
(b) there exists an embedding o K — R such that w(2)

P wi f).

We also discuss the combinatorial approach to the topology of triangulated manifolds
based on the theory of colored graphs. Moreover, we present some open problems which
are of interest to both topologists and combinatorists.

2. Generalizations of Moore’s theorem

Let us denote by |.r. y| the distance between points . y € R*. An arc is a path without
self-intersections. A triod is the union of three piecewise-rectilinear arcs g, by and .
intersecting only at the point 0. For a subset Z < K%, we denote | /| = sup{|r. y|
y € Z%. Atriod is called e-triod if {a. by U o] > =0 ]b.cg Uag] > £ and [eoag Uyl > =.
A tree is the union of (intersecting) rectilinear arcs in R2, which is connected and does

not contain any cycles.

Definition 2.1 [42]. A tree i° C R* is said to be =-disjoinable if there is a vector @ € R~
such that K N (K = @) = 0 and |7

-
SN

This property is a simplified graph analogue of the existence of an uncountable collec-
tion of disjoint copies of a continuum A" in R*. The graph analogue of Moore’s theorem
on triods is that no z-triod is £-disjoinable (ctf. [36}). Our further considerations are related
to the well-known Konstantinov Fatties Theorem and Mountain Climbers Theorem.

Theorem 2.2 [2, 1.1.2].

(a) Suppose that two byciclists, connected by « rope of length €, can ride along two
roads from A to B and from A’ 1o B, respectively. Then two e-fatties (round disks
of diameters o) cannot ride along the first road from A to B and along the second
road from B’ 10 A', respectively, not intersecting each other.

(b) ([19.23,55]. see also |5]) Two mountain climbers begin at the sea level, at opposite
ends of a (wo-dimensional) chain of mountains, Iving above the sea level and
having finitely many summits. Then they can find routes along which to travel,
alwavs maintaining equal altitudes, until they eventually meet.

Definition 2.3 [17]. A tree & < 7 is said to be svmmetrically =-spanned it and onty
if two =-fatties cannot ¢xchange their positions, moving continuously their centers on &
and not intersecting each other.

Evidently, no e-triod is symmetrically =-spanned (cf. [17]). However. for each = > 0.
there is a tree in 127 which is not symmetrically I-spanned and does not contain any
e-triod (see Fig. 3) [20].
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Fig. 3 Fig. 4.

Now let us sketch a new proof of Theorem 1.1, which may be of help in attacking
unsolved problems below. Let = = |@ . For z,y € K such that |r.y| > <. disposc two
men (not fatties!) at - and y + @, and move them to y and =+ « along the arcs I € I and
I+dC N+d joining = to y and y — d to v — d, respectively. If the resulting rotation of
the vector from the first man to the second one is in the clockwise direction. let .« < y. It
is easy to show that then for each .-,y € /" such that |v. y| > ¢, either » < y or y < r.
The relation "<" is well-defined and continuous. Therefore e-fatties cannot exchange their
positions. Thus every =-disjoinable tree is symmetrically =-spanned. A stronger result is
possible. First, we need a definition.

Definition 2.4 {30]. A tree ' C R? is said to be e-spanned if two =-fatties cannot move
continuously their centers on A" and not intersecting each other, so that their traces would
be the same.

Evidently. any s-spanned tree is symmetrically e-spanned [17]. It is easy to show that
every subtree of an e-disjoinable trec A" has a <-minimal point (i.e., a point « € I such
that « < r whenever r € A and |x.u > 2). It follows that any =-disjoinable tree is
g-spanned [42]. Note that in general, the relation < is not transitive {sce Fig. 5) [42].

The genuine graph analogue of the existence of an uncountable collection of disjoint
copies of a continuum A in R? is defined as follows. A tree A C R is said to be
genuinely s-disjoinable it there is a continuous (or piecewise linear) map [: K — R-
such that A M f(I) # @ and |o. f()] < = for each x € K. The proof of Theorem 1.1
remains valid if by e-disjoinability we understand this weaker property. The method above
can be applied to solve affirmatively the following famous problem from continua theory:

Problem 2.5 |16, 430].
(a) Is any genuinely -disjoinable I =-<panned?
(b) Is any symmetrically s-spanned tree =-spanned?

To state the graph analogue of another generalization of Moore’s theorem, let us
introduce:

Definition 2.6 [8]. A tree K < R? is said to be s-narrow if there is an arc { < K such
that . l] < ¢, foreach © € K. A tree K C R? is said to be hereditarily <-narrow, if
every one of its subtrees is z-narrow.
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Fig. 5.

Evidently, no c-triod is s-narrow [9]. However, for each ¢ > 0, there is an s-narrow
tree containing a 1-triod (and hence not hereditarily e-narrow) (see Fig. 4) [9].

Problem 2.7.
(a) [9] Show that a tree, containing no s-triods, is 10z-narrow.
(b) [31,34] Prove that any =-spanned tree is 10z-narrow.

In the proof of Problems 2.7 Konstantinov’s Theorem could perhaps be useful. If we
change < to 10¢ (or to A=, for some fixed A/) in the conclusions of Problems 2.7 (or in
any other problem from our list). we obtain weaker assertions. But to prove them it still
suffices to prove their continuous analogues, which involve no = at all. So it is as much
interesting as to prove nonweakened assertions (which could be false).

The graph analogue of [8] is that any s-disjoinable tree is s-narrow (and hence any
e-disjoinable tree is hereditarily c-narrow). Now, let us introduce a property. sufficient
for genuine s-disjoinability.

Definition 2.8 [6]. A tree & C K’ is said to be e-chainable if for some n, I is the
union of its closed subsets 'y, ..., ()}, such that diam C; < e fori = 1.2....,n.and C,
intersects only ;| and ;| for i =2.3..... n—1.

Evidently, any s-chainable tree is symmetrically <-spanned [17] and =-spanned [30].
It is not difficult to show that any =-chainable free is also genuinely c-disjoinable [43].
However, for each ¢ > 0 there is an s-disjoinable but not I-chainable tree (see Fig. 5)
[38.42].

Problem 2.9. Prove that every (genuinely) s-spanned thee K C R? of diameter | is
10s-chainable.
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In searching a counterexample perhaps Fig. 6 could be useful. For an affirmative proof
[21] may be useful.
We have the following connections between the properties introduced above:

{ no {
e-chainable = _ genuinely ¢-disjoinable == __ hereditarily e-narrow
? no " ?
S - i
e-spanned B symmetrically e-spanne = containing no e-triods
¢ : [ |

3. Basic embeddings

Fix a Cartesian coordinate system in [R*. Denote by [¢h] the rectilinear arc. joining
points a.b € R?. A sequence {aj.....a,} < R? is said to0 be an array. if for each
=2, n—1,a. #a; #a;— and [u;_ya, , a;a,41] are orthogonal to each other
and parallel to the coordinate axes.

Definition 3.1. An embedding A" R is said 1o be basic, and it is denoted by A, R,
it for some integer n there are no arrays of 7 points in K.

Evidently, the set K = {{0.0),{0.1),(1.0), (1. 1)} contains arrays of arbitrary great
length. Clearly, it is not basically embedded in R?, by the definition from Section I. This
example illustrates the equivalence of the two definitions, proved in [51] for compact
subsets K.

We outline the idea of proof of Theorems 1.2 in Lemmas 3.2-3.9 below. Their proofs
are easy and are left to the reader. These ideas are useful in attacking open Problems 3.10-
3.15. For simplicity, we restrict ourselves to PL-embeddings.
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It will be convenient to use another equivalent definition of basic embedding. Denote
by p and ¢ the projections of & onto the coordinate axes. Then for a point z € R,
' p(2)) and ¢~ '(g(2)) are lines. going through = and parallel to the coordinate axes.
For Z C R’ let us define:

E(Zy=1:e R |Znp ' (plz)] 22 and Z0g ()] =2}

It is easy to show that any embedding I < R- is basic if and only if E"(K) = W, for

some 1.

Lemma 3.2 |51]. The circle S from Fig. V is not basically embeddable in &~

Lemma 3.3.

(a) If P Cy R then a cross with center d is basically embeddable into the half-plane
[0. ) x R so that d = (0.0).

(b) If a cross with center d is basically embeddable into the half-plane [0. +~x) x R
so that d = (0.0), then a triod with center d is basicallv embeddable into the
quarter-plane [0, —nc) x [0+ ) so that d = (0.0).

(¢) A triod with center d cannot be basically embedded into [0. ~~:) x [0.+~) so
that d = (0.0}

(d) The pentod 1’ is not basically embeddable in R>.

Lemma 3.4. If the cross with the “center’ d is basically embedded in R?, then one of its

branches contains a rectilinear arc with the end . parallel to one of coordinate axes.
Basic nonembeddability of (" is reduced to that of [7 (see Fig. 1) using Lemma 3.4
and the following device.
Definition 3.5. Suppose that &' & R and {0} x [0.1] < K. Define a compression
p:R> — R by:
(r.y). r< 0
plecy) =19 (0.9, 0< <l for every pair (r.y) € &~
(r—1.y). a=1.

Lemma 3.6. Under the hypotheses of Definition 3.5, if K <, R*, then the restriction of
pon WA (0} < [0.1]) is a 1-1 map and p(K) =, R

This lemma can also be proved using the definition of basic embedding from Section 1.
Note that the reverse implication of Lemma 3.6 15 also true (we do not need this in the
proof of Theorem 1.2).

Lemma 3.7. The graph C' of Fig. 1 is not basically embeddable in 2.

Lemma 3.8. [/ « graph K does not contain any of S, P, C, then K is contained in the
graph 'V, for some n (see Fig. 2).
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Lemma 3.9. V), is basically embeddable in R* for every integer n.

In [49] the description of compacta, basically embeddable in R2, was established for
pathwise connected compacta and conjectured for connected compacta.

Problem 3.10. Prove this conjecture.

The definition of a basic embedding into R? could obviously be generalized to em-
beddings into X x Y. for arbitrary spaces X, Y. Some problems from the preliminary
version of this paper have already been solved. Now they appear as Theorems 3.11 and
3.12. Let T; be an i-od.

Theorem 3.11 |28]. A finite graph K is basically embeddable into Ts x T5 if and only
if either of the following equivalent conditions hold:

(a) K does not contain any of graphs of Figs. 7(a)~(h);

(b) K is contained in U, for some n (Fig. 8).

Call a vertex of a graph A horrid (respectively awfiul) if its degree is greater than 4
(respectively, its degree equals 4 and it has no hanging edges). The defect of graph K is
the sum

SA) = (deg A —2)+ -+ +(deg A, — 2).

where A;..... A, are all horrid and awful vertices of K.
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Theorem 3.12 {29]. A finite (not necessarily connectedy graph K iy basically embed-
dable into T,,, x T, if and only if it is a tree and either 6(K) < m +n —2 or K has a
horrid vertex with hanging edge and 6(K) <<m +n — 2.

Problem 3.13. Find a description of graphs, basically embeddable into
(@) RxS:
(by Ty x S,
() S8
(d) (a graph) x (a graph).

Problem 3.14. Show that for every triple of finite graphs /', X. Y there is an algorithm
for checking whether A is basically embeddable in X x };

Problem 3.15 (cf. [44]). Prove that for every pair of finite graphs X. Y there is a finite
number of ‘prohibited” subgraphs for basic embeddings in X x Y.

Note that a minor of a basically embeddable graph is not necessarily basically embed-
dable.

4. Approximability of maps by embeddings

Definition 4.1. A map f: K — A/ between graphs A" and A 1s said to be embeddable in
[%2 if there is an embedding o : A/ — R? such that the composition o f is approximable
by embeddings (i.e.. for each = > 0 there exists an embedding v: ' — R which is
g-close to o f).

For a graph A let
R = U {o x 7| o.7 are cells (edges or vertices) of K, o M7 =0}
be the deleted product of K (it is a 2-dimensional polyhedron). For a map f: A — R* et

KRS = U {rT X T

We omit Z-coefficients trom our homology and cohomology groups. Let us construct
a generalization of the van Kampen obstruction @/(f) € Hi([?.];'f) and a difference
element w(f) € HL( /}"). for an arbitrary PL-map f: R — R? (not necessarily an
embedding).

o.7 are cells of K. f(o)yn f(r) = V)}

Definition 4.2. Take a general position map g: /i~ — R, sufficiently close to the map f.
Fix an orientation of R> and for any two disjoint oriented edges o and 7 of A, count an
intersection where the orientation of g{o) followed by that of g(7) agrees with that of
R? as 41, and ~1 otherwise. Then 9(f) is the class of the cocycle /,{f)(s.7) which
counts the intersections of ¢(a) and g(7)} algebraically in this fashion. If f maps all K
to a point, then /() is the van Kampen obstruction to embeddability of A in R,
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(a) (b) (c)

(d (e)

(f) (g)

Fig. 9.

Definition 4.3. Approximate / by a PlL-map, sufficiently close to f. Denote this new
map also by f. Take a point x € S'. Fix an orientation of R? and for each oriented
edge 7 and vertex a of K (where f(a) ¢ f(o)) count the passage of the oriented
path f':{a} x ¢ — S' through @ when the path goes through a in the clockwise
direction, as +1, and —1 otherwise. Choosing .r in general position, we may assume
that = ¢ f({a} x dc) and that the path goes through u transversally. Then w(f) is the
class of the cocycle w,(f)({a}, 7). which counts the intersection of f{a x o) and
algebraically in this fashion.

Evidently, these definitions are correct and Theorem 1.3 is true. Theorem 1.3 can be
applied to show that maps in Fig. 9 are not approximable by embeddings [40.48].

Example 4.4 [40].
(a) Map f in Fig. 9(e) is not approximable by embeddings; however. 9( f) = 0.
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Fig. 10.

(b) Maps f in Figs. 9(f) and 9(g) are not approximable by embeddings: however there
is an embedding  such that w(e)| =, = (f).

Problem 4.5. Show that the reverse implication in Theorem 1.3(a) is true provided that:
(a) K is arbitrary and f is monotone;
(b) K is an arc; or
(¢) A is a tree.

Evidently, if two embeddings f.g: /" — R* are isotopic. then w(f) = w(g). From
this it follows that embeddings in Figs. 10(a) and 10(b) are not isotopic. It is not difficult
to show that embeddings f.¢: K — R” of a trec K are isotopic if and only if for each
triod ~ € A, embeddings |, and ¢~ do not constitute the pair, shown in Fig. 10(a).

Theorem 4.6 [35]. Embeddings f,g: N — R" of a graph K are isoiopic if and only if
for each triod or simple closed curve ~ C K, embeddings f|- and g\, do not constitute
a pair. shown in Figs. 10(a) or 10(b).

Therefore embeddings f.g: K — R are isotopic if and only if w(f) = w(g). In [45],
a beautiful description of H»([\) related to Kuratowski’s criterion, was established.
Theorem 4.7 [45]. H~(I) is generated by
{lv = 7] € I [;) ' Y1.v2 © N are disjoint simple closed curves}
J { € H( [x) |y © K is homeomorphic to either Ks or K33}

Furthermore, dim Hg([\'\) is either equal to the maximal number of independent tori
Y X~ contained in i1, or else one more than this number. The first alternative occurs
if and onlv if K is planar.

We conjecture an analogous description of H (/&) and HZ(K) exists, related to the

MacLane~Adkisson criterion (perhaps one should first try the Z,-coefficients). For a
proof the method of [52] could perhaps be useful.

Problem 4.8. (a) /3 (K is generated by

{lnxnUnxy]e Hf(]:') | 71.792 C I are disjoint simple closed curves}
OB e 13(R)

~v C I 15 homeomorphic to either i’5 of [\'3_3}.
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{b)y H, (I;') is generated by
{[7] € H, (I:) | v C I is homecomorphic to either 5" or 7'}

U{ly < ay Ja, x 7] e H, (I:) |4 € K is homeomorphic to S'. ) € A\ 7}

Find dim H, (K).
(¢) H () is generated by

{I3] € H{ (K) | v < K is homeomorphic to either S' or 7'}

Uy xayUa, xn] € H;S(I;’) |4 K is homeomorphic to S'. . € K\ v}

Find dim H(K).

5. PL manifolds and colored graphs

In this section we investigate the connection between colored graphs and triangulated
(PL) manifolds. For general references on graph-theoretical representations of PL. man-
ifolds we refer to [7.10-14.18,22,32.54]. We shall list some open problems from this
area.

An (n + L)-colored graph is a pair (G.¢), where G = (V((). F(CH) is o multiple
graph, regular of degree » -+ | (possibly with multiple edges but without loops), together
with a proper edge-coloring ¢: F{G) — A, = {0.1... .. n}, by means of n 4 | colors
(hence ¢(¢) 7 e f). for any pair ¢, f of adiacent edges of (7).

To every colored graph ((7. ¢) is associnted an n-dimensional polyhedron |G| as fol-
lows:

(1) for each vertex » € V((/), consider an n-simplex o (v') and label its 7+ 1 vertices

by A, and

(2) if ¢ and « are joined in G by an /-colored edge. i € A, then identity the

(= 1)-faces of " (v) and " (1) opposite to the vertex labelled by 4, so that
equally labelled vertices coincide.

We say that an (n 4+ 1)-colored graph (. ¢) represents a closed (i.c.. compact, con-
nected and having no boundary) PL n-manifold A" if |Z] is PL homeomorphic to A,

Theorem 5.1 (Existence). Ler M be a closed PL n-manifoid. Then there exists an
{n1 + D)-colored graph G which represents M. ie.. |G| =p_ A

Proof. Suppose A is a (simplicial) triangulation of A/. Then the first barycentric sub-
division K7 of I is vertex-colorable, in the sense that each n-simplex of A contains
n -+ 1 differently colored vertices. In fact. we color by i € A, all the vertices of A"’
which are barycenters of the ¢-simplices of /\'. Let now (¢ be the [-skeleton of the dual
cellular subdivision of A”. Obviously. G is a multiple graph and is regular of degree
n + 1. Furthermore, each edge of ¢ inherits the color of the vertex ot ' which does
not belong to the dual (i — 1)-simplex. The graph (7 with the edges colored in this way
represents A ie, G| ~p. AL O



A. Cavicehioli et al. / Topology and its Applications 84 (1998) 207-226 219

This result can be extended to PL manifolds with nonempty boundary and to PL gen-
eralized (homology) manifolds by suitable moditications of the definition of the colored
graph (see [12]).

By means of Theorem 5.1, we can analyze PL manifolds using colored graphs which
represent them and reduce the study of PL manifolds to problems from graph theory.
Unfortunately, there are many different colored graphs representing the same manifold.
However, these graphs are related by a finite sequence of moves, defined as follows:

Given an {1 + 1)-colored graph (7. an mi-residue of (i is a connected component of
a subgraph gencrated by any i specified colors. A subgraph ¥ of (v, formed by two

vertices ¢ and 1, joined by & edges. | < k =i n, with colors ¢y oo ..y is called
a dipole of tvpe b if ¢ and w belong to distinct (4 1 — k)-residues. generated by
Ap\ferean i b Cancelling ) means the following:

(1) delete ¢, «w and the # edges joining them:
(2) to paste together the pairs of dungling edges (the ones which had an end-point in
the deleted vertices) of the same color,
Adding ' means the inverse process.

Theorem 5.2 (cquivalence). Two colored graphs represent PL homeomorphic manifolds
if and only if one can be transformed into the other by a finite sequence of cancelling
and/or adding dipoles.

It follows that every topological property of a closed PL manifold can be deduced from
the properties of the colored graph which represents it. For example, it can be proved that
the orientability of a manifold is equivalent to the bipartiteness of the representing graphs.
Furthermore, connecied sums of PL r-manifolds Af; and Ay correspond to connected
sums of representing graphs (7 and (/>. respectively. Indeed, one can match arbitrarily
the colors of (Jy and (7. take off a vertex from either graph and paste together the
dangling edges with colors corresponding in the matching.

5.1. Characterizations

An immediate characterization of colored graphs representing manifolds is provided
by the tollowing:

Theorem 5.3. Let ((.¢) be an (n + 1)-colored graph. Then GG represents a closed PL
n-manifold if and only if every n-residite (i.e., a component of a partial subgraph obtained
by deleting one color at a time) represents a standard (n — 1)-sphere.

In dimension three it is very easy to find an arithmetical condition for recognizing
colored graphs which represent 3-manifolds. Namely, one can show that a 4-colored
graph (& represents a closed 3-manifold if and only if the relation ¢y + g3 = ¢ holds,
where ¢; denotes the number of /-residues of (. For this purpose recall that the Euler
characteristic of the manifold on one hand vunishes and on the other hand it equals
3 — 2+ qo.
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Problem 5.4, Find algebraic characterizations of colored graphs representing closed PL
4-manifolds with special fundamental groups (e.g., finite, free products, surface groups,
poly-(finite or cyclic), amenable group, etc.).

Problem 5.5. Find algebraic characterizations of colored graphs representing PL (singu-
larly) fibered manifolds (e.g., good torus fibrations, 4-manifolds with torus actions, circle
bundles, surface bundles. Seifert manifolds. etc.).

Problem 5.6. Find an algebraic characterization of colored graphs representing the stan-
dard n-sphere S", 1 = 3.

Problem 5.7. Heegaard diagrams and branched coverings can be described by graph-
theoretic tools. Find a simple algorithm, determining a colored graph which represents the
3-manifold obtained by surgery along an oriented link (with coefficients) in the oriented
3-sphere S*.

5.2. Homotopy

It is well known (see, e.g., [18]) how to deduce a presentation of the fundamental
group 11, (Al) of a closed PL n-manifold 1/ from a colored graph (7 representing A/.
We shall sketch this construction. Assume that each n-subgraph of G (i.e., each partial
graph obtained by deleting a color at a time) is connected (eventually, cancelling suitable
dipoles). Choose two colors o and /3 in the color set 4A,, and denote by .y a0, ... .. r, the
connected components, except one, of the (1 — 1)-subgraph of ¢ obtained by deleting
a- and -colored edges. It is easy to see that the connected components of the comple-
mentary 2-subgraph are simple cycles, whose edges are alternatively colored by « and
5.1t 10 = 2. let y; be the only connected component. If » 2> 3, denote by ¢y ya. .. ..y,
all components, cxcept one; fix an orientation and a starting point for each of them.
Compose the word r; from the cycle y;. by the following rule: follow the chosen di-
rection, starting from the chosen vertex and list consecutively cvery o, you meet with
exponent +1 or —1 according to whether v or ;3 is the color of the edge which leads
you into .r;.

Theorem 5.8. With the above notation, the fundamental group of the closed PL n-
manifold M admits the following finite group presentation:

Problem 5.9. Deduce combinatorial descriptions of the homotopy groups [1,{Al), i = 2.
from a colored graph representing Af.

Problem 5.10. Under which combinatorial conditions on colored graphs representing A/
certain homotopy groups (c.g.. II1 (Al or 1{-(A}) vanish?



A. Cavicchioli et al. 7 Topology and its Applications 84 (1998) 207-226 22]
5.3. Homology

A homology theory for colored graphs was developed in [14] as follows:

Let G be an (n + 1)-colored graph. Two vertices v and w of G are said to be I'-
connected, I" C A, if they are joined by a finite sequence of edges with colors in I
Let us define:

Sp(G) = {{I"V) | #I =k AV is a I'-connected component of G }.
We say that the free [2-module (R a principal ideal domain) ' ((G) on the set S5 () is
the module of k-chains of . For simplicity, we shall suppress the -coetfficients. We
set CL(GY = {C1{G) rez and CL(G) =0 if S(G) = 0.
Next. we define the boundary operator on (', (). Let
o4:A— A (A C7Z afinite set)
be the cyclic permutation defined by
min{z: z € AAz>m} if m < max A,
galm) = . o
min A if 1 = max A.
Let ord(A.m) be an integer such that afr](‘i&""](min A) = m and define 0:C.((G) —
C(G) by setting
AIVY = (=N (T i)
Iy
where the second summation is taken over all pairs (I"\ {i}, W} such that

(1) Wiisa (I"\ {i})-connected component of G; and

2) Wcv.

Since 0C, 1 (G) € C,((7) and 909 = 0, the pair (", ((7), 9) is a chain complex. Thus
the homology H. (C'.(()) and the cohomology H*(C',((7)) of GG are defined in the usual
way, denoted by H..(G) and H*((). respectively. Obviously, a (colored) isomorphism
between colored graphs induces an isomorphism between the respective (co)homology
groups.

Theorem 5.11. Let G be an (n+ 1)-colored graph. Then we have H,(G) = H” 7(|G])
and HY(G) = H,, _,(|G|). Furthermore, if G represents an orientable closed homology
n-manifold, then H,(G) = H"7F(G).

We refer to | 14] for details and more information on the combinatorial analogs to exact
homology sequences, products, duality, etc.

Problem 5.12. Find combinatorial conditions for recognizing colored graphs which rep-
resent homology n-spheres, n > 3.

5.4. Combinatorial invariants

Various numerical invariants can be associated to PL manifolds via representations
by colored graphs (see, e.g.. |7,10,11.18,22] for various concepts of complexity, regular
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genus, etc.). Here. we shall only discuss one which was first introduced in {7]. Let A"

be a closed PL n-manifold and G a colored graph representing A7. Denote by G(AT)

the set of colored graphs which represent M and define 3,(G) = rank C,,_ () and

(M) = min{3,(G) | G € G(A)}. We say that ¢, (M) is the k-complexity of A,
The reduced complexities of Al are:

n+1

), O0<k<n—1,
k41

(&11\,(1\[‘) = ('/,-(]U) - <

Gu(M) = e (M) —

The following was proved in [14]:

Theorem 5.13.
(1) Let M and M’ be closed PL n-manifolds. Then the reduced complexities are
subadditive, i.e., ¢, (M # M) < e M) + (M)
(2) (M) =0and (,,,(AI, =0 f_]‘ ana’ only if Ml =p S (n-sphere).
(3) For every closed surface M, ¢ (M) = —(v( MY == 6= 3y (M), where x (M) is the
Euler—Poincaré characteristic of Al Furthermore, the reduced complexities are

~

additive in dimension two.
(4) If M is a closed 3-manifold, then ¢\ (M) = % (M) = e3(A).
(5) If Al is a closed PL d-manifold, then ¢ (M) = 6 — 3\(&/) + 30 (M ) (M) =
4 — 23 (M) + 2¢4(A), and ¢3(AT) = % (AT).

Conjecture 5.14. Let A/ and A/ be two closed orientable PL 4-manifolds. Then
G (M#M') = (M) + &4 (M),

Conjecture 5.15. If A/ is a simply-connected closed PL 4-manifold, then (A} =
O (Al) — 12

Remark. Conjecture 5.14 implies the PL (DIFF) 4-dimensional Poincaré conjecture, i.e.,
that every homotopy 4-sphere is PL (DIFF) homeomorphic to the standard 4-sphere S*.
Indeed, let A7 be a homotopy 4-sphere. Then there exists a nonnegative integer & such
that M # k(S* x S?) is diffeomorphic to A(S” x S7)., by a well-known theorem of Wall.
Here k(57 % S*) represents the connected sum of & copies of S x 2. Conjecture 5.14
implies that
G(AT#E(ST x 8%)) = ca(M) + & ((S7 x 97)) = &4 (k[ S x S7)).

hence ¢;(A/) = 0 and so by Theorem 5.13(2), A ~p &

Problem 5.16. Complexity gives rise 1o an interesting family of colored graphs: G ¢

G(M") is said to be minimal it ¢, (A"} == 3,(G). Study the properties of these graphs
and find combinatorial Lhdl’d((@l’lldll()nh of them.

As it was pointed out by Kiihnel in |26] our equations for ¢, ¢3, 3, and ¢4 in the case
of a closed PL 4-manifold are similar to the Dehn-Sommerville equations. Indeed, the
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expression 2 — x (M) occurs in a natural way in Theorem 5.13(5) as well as in [25], in
particular in the following conjecture:

Conjecture 5.17* (Kihnel). For every triangulation of a closed PL. (2%)-manifold ALH
with n vertices, the following inequality holds:

PR C | S
(1) e (P aan -
b+ k41

with equality if and only if the triangulation is (A 4 1)-neighbourly (see [25] for the
definition).

Problem 5.18 (Kiithnel). Find the relationship between the two concepts above.
5.5. Homeomorphism type

From now on we shall consider 3-dimensional closed manifolds. It is well known that
the Heegaard genus one 3-manifolds are topologically classified. In particular, a colored
graph G{p. q) representing the lens space L(p. ) is easily constructed as follows:

Take two cycles of length 2p and let vy, vz, and wi wa. .. .. w2, be their
vertices ordered cyclically and with indices in Z,,. Color the edges alternatively with 0
and 1 so that the indices correspond. Then put edges of color 2 between v; and w; and
those of color 3 between +; and w2,

One can extend this construction in a natural way to represent all Heegaard genus two
3-manifolds by 4-colored graphs, depending upon 6-tuples of positive integers:

Theorem 5.19. Let A be a closed 3-manifold of Heegaard genus two. Then there exists
a 4-colored graph, depending upon « 6-tuple of positive integers (101 loyins lisina. hy),

which represents M.

Proof (Sketch). Take three cycles Cy, '), and (1 of length 25y, 2ns. and 2na, respec-
tively, set cyclically in the plane and with indices in Zs. Color the edges of the cycles
alternatively with 0 and 1. Connect, in a standard fashion, C, with (';1 with a set of
n, + i1 — ni—o parallel edges of color 2 (indices mod 3) in order to obtain a pla-
nar 3-colored graph (which of course represents the standard 2-sphere S*). Repeat the
same construction with sets of parallel edges colored by 3 after the clockwise rotations
described by three positive integers vy, k> and h3.
Deleting all 2-colored edges obviously yields a planar graph. O

Problem 5.20. What relations exist between two 6-tuples generating graphs which rep-
resent the same manifold? Classify the homeomorphism type of the Heegaard genus two
3-manifolds in terms of 6-tuples representing them.

Problem 5.21. What arithmetic conditions on these 6-tuples of integers yield homology
3-spheres?
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There is a simple combinatorial proof of the classical Viro theorem to the effect
that every genus two orientable closed 3-manifold is a 2-fold covering of the 3-sphere
S* branched over a 3-bridge link, by using 6-tuples representing graphs. Namely, one
constructs a suitable colored involution acting on the graph.

Problem 5.22. Write a finite presentation of the fundamental group of u Heegaard genus
two 3-manifold in terms of a 6-tuple of integers giving a colored graph which represents it.

In a forthcoming paper we shall classify the topological structure of all genus two
homology 3-spheres, represented by graphs arising from 6-tuples as above, up to 50 ver-
tices. Moreover, we shall present a computer program which generates a catalogue (with
possible repetitions) of the Heeguard genus two 3-manifolds together with a presentation
of their fundamental groups.
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