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1. Introduction

In [5] Cappell and Shaneson settled the question of the existence of a
spectral sequence in surgery theory related to the splitting problem in the
case of one sided submanifolds. Such a spectral sequence was constructed
by Hambleton and Kharshiladze in [18] as a natural algebraic object
closely related to the Browder-Livesay invariants and the problem of
determining which elements of surgery obstruction groups arise from
normal maps of closed manifolds.

Let X cY be a one-sided codimension 1 submanifold of an
(n + 1)-dimensional manifold Y such that the inclusion map induces an

isomorphism between the fundamental groups. We set n = n;(Y\ X),
and G = n;(Y). Denote by AT(Y) the set of homotopy triangulations of

the manifold Y (we work in the piecewise-linear category), which consists
of all simple homotopy equivalences f: M — Y with the following

equivalence relation. Two simple homotopy equivalences f; : M; » Y
and fy : My » Y are said to be equivalent if there exists a piecewise-
linear homeomorphism g : M; - M, such that the composite map

fo ° g is homotopic to f.

The Browder-Livesay group LN,(r — G, w) is the group of
obstructions for splitting a simple homotopy equivalence f: M — Y

along X for any manifold M (see [3], [4], [14], [22], [31], and [36]). The
homomorphism {: 7% — G is induced by the natural inclusion, and

w: G = mn(Y) - {x1} is the orientation homomorphism. The manifold X
is equipped with the orientation character w™ : G — {+1} which is
changed only on the element ¢t €« G\n. We denote by G~ the group G

with this orientation.

There exist two important maps between the Browder-Livesay groups
and the Wall surgery obstruction groups (for recent results on the (stable)
classification of closed 4-manifolds by using surgery obstruction groups
we refer to [6], {7], [8], and [9]).
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The first map
ti, : LN, (n > G) » L,(G7)

can be described in the following way. Suppose that the obstruction for
splitting the map f along X is the element

x = o(f) e LN,(n - G, w).
Then the element
y =ti(x) e L,(G™)
is represented by the normal map f}(X) -» X.
To describe the second map
it : L,,2(G) » LN, (x > G),

we must realize any element x € L,,5(G) as a normal map F : Z -

Y x [0, 1] between manifolds with boundaries (see [36]). We set 9¢(Z) =
FY(Y x0) and 3;(Z) = F7}(Y x1).

The restriction

(F lo,(z) : 01(Z) » Y x1) e hT(Y)

of the map F is a homotopy triangulation of the manifold Y. The
restriction F |y (z) is the identity map, and the obstruction for splitting

the simple homotopy equivalence

F|al(z) :01(Z2) > Y x1

along the submanifold X is the element i't™'(x) € LN, (x - G).

There are algebraic definitions of these maps (see [14], [30], and [31])
which give effective methods of computing them (see [15], [23], [24], and
[26)).

The following deep result about the ﬁlap i't"! was obtained by
Cappell and Shaneson in [4] (see also [14] and [15]).
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Theorem 1.1. Let i : x » G be an inclusion of index 2 and let x be

an element of L,1(G). If i't ™ (x) # 0 in LN, _j(n > G), then x cannot be

realized by a normal map of closed manifolds. Furthermore, it never acts

trivially on any element of the set hT(Y) of homotopy triangulations of
any closed connected manifold Y with n;(Y) = G.

Thus the map it represents the first obstruction for realizing an

element of the Wall group L, ,;(G) by a normal map of closed manifolds.

Sometimes, it is called the Browder-Livesay invariant since the case of
the index 2 inclusion 1 — Z/2 was first considered in [3] (see also [22]).

The Browder-Livesay invariant fits in the following braid of exact
sequences (see [14], [20], [26], [32], [33], and [36]):

11

> Ly > L@ 5 LN, &> 6)
/ N / N 7/ N
Ln+1 (i,— ) ‘L r Lu+1 (i. ) (D)
N / N / N 7
- LN,(n > G) - L,(G7) - L,(x)

where the vertical map I' yields isomorphisms between the homology
groups of upper and lower rows. This diagram has period 4. The map I'
can be described in the following way. Let dimY =n, i;(Y) = G, and

suppose that a normal map

F:Z ->Yx]o,1]
realizes an element x € L,,;(G). If i't"!(x) = 0, then the map

F| F (X x[0,1]) > X x[0, 1]

FY(xxf0,1)°
is a simple homotopy equivalence on the boundary

F Y (X x[0,1) = F}(X x0)U F1(X x1),

and hence it represents the element I'(x) of L, (G™).
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We compare the index 2 inclusions n - G and n — G~ of groups

with orientations. There exists a diagram similar to (D) arising from the

inclusion n — G~. The last one contains the map ti,, and it will be

denoted by (D7).

By using diagrams (D) and (D7), there was constructed in [18] a

surgery exact sequence with
P
EPT = LN, 5, o(n » GO) = LNy 5(n - G).
The first differential
? 1,
d, : EP? > El"+ q
of this spectral sequence coincides with the composition

ti.

+1
LNy gp-g(n > GO") 3 Ly o, o(GT)
Lit!

LN(I—2p(7t - G(n)pu) = LNq—2p—2("t - G(-)p)’

which is the map 1+ ® for the involution ® on the groups LN,(n —» G)
(see [14] and [18]). The higher differentials of this spectral sequence can
be written down in the form i't™! o T* o ti,, and thus they coincide with

the iterated Browder-Livesay invariants.

In [18] there was given an example of the nontrivial second
differential of the spectral sequence. However, it follows from [23] and
[24] that all second differentials are trivial in the case of L'-groups for
finite abelian 2-groups. The problem about the existence of nontrivial
higher differentials is still open.

Afterwards in [10] there was constructed spectral sequences in
K-theory for a twisted .quadratic extension of antistructures. These
spectral sequences are simpler than the surgery spectral sequence, and
give more effective methods for computing natural maps between Tate
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cohomology groups, and, hence, natural maps between decorated
L-groups ([16], [35], and [36]). As follows from [10], [11], [18], [26), and
[32], it is possible to construct a spectral sequence similar to those
discussed above for any quadratic extension of antistructures.

We remark that in geometric applications of the splitting problem for
a one-sided codimension 1 submanifold, the groups LS, (F) arise in the
case when the map n;(X)— G = n;(Y), induced by the inclusion
X c Y, is only an epimorphism. The group LS, (F) of the obstructions

for the splitting problem does not depend on the particular pair of
manifolds, but it depends functorially on the push-out square F of
fundamental groups with orientation:

ﬂl(aU) —> Rl(Y\X)
F=| 2
nX) - m)

. (1.1)

where U is a tubular neighborhood of X in Y, and on dimension n (mod 4)

(see [1], [2], [12], [13], [19], [21], [25], [271, [28], [31], [33], and [36]). If the
map i in square (1.1) is an isomorphism, then we have

LS,(F) = LN,(r > G).
In the case of LS, groups, there exists a natural map

© : Ly1(G) - LS, (F),
which is similar to the map i't™!, and it is called the generalized
Browder-Livesay invariant (see [1] and [21]).

For an n-dimensional manifold Y we have the surgery exact sequence
(see [36])

Cs Ce

- Ln+1(nl(Y)) - hT(Y) - [Y: G/PL] - Ln(nl(Y)) (1-2)

which is the main tool for computing the set AT(Y) for the closed
manifold Y. The group n;(Y) is equipped with an orientation w : my(Y)

— {+1} and G denotes the monoid of classes of stable homotopy
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equivalences of the standard n-sphere S™. It follows from the definition

of the exact sequence (1.2) that the elements of the group L,(n;(Y)),
which lie in the image of the map o,, are realized by normal maps

of closed manifolds (see [14], [15], [31], [33] and [36]). Additionally,
let XY be a closed one-sided submanifold of the manifold Y
(codim X = 1). Then we have the following commutative diagram (see

[31], and [33]):
B Lyam(Y) - ATEY) > [Y.G/PL] 3 L,(n(Y))
I ! ! I (1.3)
> L) 8 LS, (F) > LP,(F) - Ly(m(Y))

The second row of diagram (1.3) is the exact sequence appearing in the
. diagram similar to (D) (see Section 2 below). It follows from diagram (1.3)
that any element x € L, ,;(n;(Y)) with ©(x) # O acts nontrivially on the

set AT(Y). In the considered case we have also the Browder-Livesay

1nvariant
Ly (my(Y)) > LN, (m; (YN X) - 71 (Y))

which is the composition

e
L, (m(Y)) > LS, (F) » LN, (m (Y \ X) » m(Y)),
where the second map is induced by the natural map of squares

Ttl(aU) ~> KI(Y\X) TII(Y\X) :) WI(Y\X)
F = d d - J d . (1.49)

nX) S m(y) n®¥) S5 m(Y)

Thus the generalized Browder-Livesay invariant can give deeper
information about the set AT(Y) than the Browder-Livesay invariant.

From an algebraic point of view, the natural generalization of square
(1.1) is given by a geometric diagram of antistructures (see [19], [25], and
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[26]). This is a commutative square of antistructures [34] in which the
vertical maps are quadratic extensions of antistructures [32], and the
horizontal maps are epimorphisms with some additional natural
properties. A square of antistructures of this type arises from square (1.1)
by considering the group rings with standard involutions (see [19], [25],
and [28]).

In the present paper, we construct a spectral sequence for any
geometric diagram of antistructures, and study its algebraic properties.
In the case when LS, -groups are isomorphic to the Browder-Livesay
groups, our spectral sequence coincides with the spectral sequence
constructed by Hambleton and Kharshiladze in [18]. Then we study the
relations with the previous spectral sequences, and discuss some
examples and applications.

2. Geometric Diagrams of Antistructures

We first recall some basic definitions and results on the topic (see
[11], [25], [32], and [34] for more details). Let R be a ring with unity 1. An

antistructure is a triple (R, o, 1), where v € R* isa unitand « : R > R

1

is an anti-automorphism such that a(u) =z and o?(x) = uxu™! for

every x € R. The anti-automorphism a induces involutions on the groups
K;(R) for any ¢ =0,1. A ring homomorphism f: R — R' defines a

morphism of antistructures, also denoted by £,
f:(R, o, u) > (R, o, u)
if fu=u',and a'of = foa.

For any antistructure (R, a, u) and for any subgroup X < K;(R) or

X c I?,-(R), t = 0,1, which is invariant under the induced involutions,

the decorated Wall groups were defined (see [16], [31], [34], and [35]).

In this section, we fix one of the possible decorations, namely “s”, “h”,
or “p” (see also [15] and [36]). So all L-groups are equipped with a fixed
decoration which we shall not mention whenever this does not lead to any
confusion.




ON A CERTAIN SURGERY SPECTRAL SEQUENCE 9

The structure on the ring R is given by the pair (p, a), where
p: R > R is an automorphism and a € R is a unit such that p(a) = a
and pz(x) = axa™! for every x € R. In this case, a twisted quadratic
extension of the antistructure (R, o, u) can be defined. This is the
antistructure (S, o, u), where S = R[t]/(t* -a). The element ¢ is
independent over R, and p(x)t = tx for every x € R. In addition, we
suppose that aft)t € R ¢ S. Then the anti-automorphism a can be

extended on the ring S (see [32]). The natural inclusion yields the
morphism of antistructures

i (R, o, u) > (S, a, u).
The automorphism p is extended on the ring S by formula p{x + yt)
=t(x + yt)t! for every x, y € R. We can define another antistructure
(S, &, &), where & = -ta(t™})u, & = pya, and y(x + yt) = x — yt for every

x, y € R. Since & € R and the ring R is d -invariant, the antistructure

(R, &, ) is defined. Thus we have the quadratic extension

i (R, & @) > (S, 8, 0),
which coincides with i as quadratic extension of rings.

Let (R, a, u) and (P, B, v) be antistructures with structures (p, a)

and (p’, a’), respectively. Let us consider the commutative diagram of

antistructures

Rouw 5 @sv] (R > P
F = i i =14 31, 2.1)
S au 5 @puv) S > @

where the horizontal maps are ring epimorphisms, the vertical maps are
the quadratic extensions of the antistructures corresponding to the

previous structures, and g(t) = t' for t2 = a, and ¢'2 = @’ (see [11], [25],

and [26]). Diagram (2.1) with these properties is called a geometric
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diagram of antistructures, or simply a geometric diagram. This diagram
represents a natural generalization of diagram (1.1) arising from the
splitting problem for a one-sided submanifold.

By using the automorphism y and the quadratic extensions i and 7,

we can construct the following geometric diagrams:

Y

(R, & &) > (P B0 R —» P

F = i 7=l v, (2.2)
S&az > @po| S - @
®Raz L @pv)| (B - P

Fo=| If i P L, @.3)
G e 5 @ S 2 @

and

(R, o, ) A (P, B, v) R - P

F, = i iy =4 s 2.4
S 3 @wuy 7

For square (2.1), the groups LS,(F) and LP,(F) were defined in [25]
and [28] (see also [11], and [27]).

These groups fit in the following braid of exact sequences:

- L, (P, B,v) - L,1(Q. B, v) 9’ LSn—l(F) i

/ N / N /
LP,(F) ir Ly () (DD
N / N / N /
- LS, (F) - L,(S, ya, u) - L,(P,Bv) —

Diagram (D1) coincides with diagram (D) if square (2.1) is generated
by square (1.1) for the Browder-Livesay pair by considering the group
rings over Z with standard involution. By using square (2.4), we get,in a
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similar way, the following commutative diagram of exact sequences:

- L,,(P,Bv) - L, (. vB,v) EN LSn—l(Fy) -

7 N / N / N
LPu(Fy ) J,F_ Ln+1 (Jy )
N\ / N / N /
- LS,(Fy) - L,(S,a,u) - L,(P,B,v) —
(D17)

since y? is the identity map. As remarked above, this diagram generalizes

diagrain (D7), discussed in Section 1.

3. Spectral Sequences

A surgery spectral sequence was first constructed in [10]. For this, the
case of one-sided submanifolds and the Browder-Livesay groups in
diagram (1.1) were considered. From an algebraic point of view, diagram

(1.1) can be constructed for a pair n < G, where n is an index 2 subgroup

of the group G equipped with an orientation homomorphism.

The realization of diagram (1.1) on the spectra level is the main tool
used to construct the spectral sequence, mentioned above. By using this
construction, spectral sequences of Tate cohomology groups of K-groups
for quadratic extensions of antistructures were obtained in [3]. As a
consequence, first differentials in these spectral sequences were
completely described.

In this section, we discuss the surgery spectral sequences constructed

by using diagrams (D1) and (D17) for a one-sided submanifold of

codimension 1.

We maintain all notations considered in the previous section.
According to [25] and [28] (see also [16], [18], and [36]), diagrams (D1)
and (D17) can be realized on the spectra level. This means that

homotopy long exact sequences of the maps in the central squares of
these diagrams (written down on the spectra level) give rise to full
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diagrams. Let us consider the central square of diagram (D1), which is
realized on the spectra level, i.e.,

L@, B, v)
/ N
ZLP(F) L()j) @.1)

ZL(S, ya, u)
where ¥ denotes a functor from the category of spectra into itself. For
any spectrum A = {A,}, this functor is characterized by the condition
(XA), = A,,;. Diagram (3.1) is a homotopy push-out (and pull-back)

square of spectra in which the fibers and the cofibers of parallel maps are
naturally homotopy equivalent. There exists a similar square of spectra

constructed for diagram (D17), i.e.,

ZL(Q, vB, v)
/

N
>2LP(F,) TL(jy) (3.2)
N e

ZzlL(S, o, u)

which is considered in dimension one less than the previous square. In
turn, by using squares (3.1) and (3.2), in appropriate dimensions, we can
construct the following diagram of spectra:

L@, B, v)
/ N
ZLP(F) L(J)
Ny /
YIS, ya, u)
(9,).
YL(Q, ¥B, v)
/ N
S2LP(F,) TL(jy)
N\ /
Y21(S, a, u)

g, 3.3)
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Y21(Q, B, v)
/ N
¥3LP(F) ¥2L(})
Ny /
Y3L(S, ya, u)
L (9y).
Y3L(Q, v, v)
/ N
SLR(F,) >3L(jy)

13

From diagram (3.3), we get the following column of spectra and natural

maps:
L(Q, B, v)
/
YLP(F)
Ndy
ZL@, ¥B, v)
/
T2LP(F,)
\d
2L(Q, B, v)
/
Y3LP(F)
Nd,
3L(Q, 1B, v)
/
TALP(F,)

3.4)

in which the maps d = g, ol and d, = (gy ), ° l, are the compositions of

the maps shown in diagram (3.3).
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We now introduce the following notations:

Xo,0 = L(Q, B, v) X;,1 = ZL@, YB, v)
Xp,2 = L’L(Q, B, v) X33 = Z*LUQ, 18, v)
Xop,or = L2 L(Q, B, v) Xorel 2ks1 = 22FLEQ, YB, v)  (3.5)
Xy,0 = ZLP (F) X1 = X2LP(F,)
X35 = S3LP(F) X4 3 = Z'LP(F))

For every k, we can define the spectrum X}, j_g as a spectrum that fits in
the following pull-back square of spectra:
Xpk-2 2 Xp-nk-2

l !
Xek-1 > Xpopka

We continue this process to define spectra X, ;_; forallkand j > 3, and

an infinite homotopy commutative diagram of spectra:

Xo,0

(3.6)

N
4
NN N
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To construct the surgery spectral sequence, we consider the following
filtration (see [18]):

> X309 2 Xa9 > X390 — Xoo0- 3.7
Then we define the first term of the spectral sequence
E{)’s = 7[s-—p(Xp,O» Xp+1,0)-
From the construction of the spectral sequence, we get isomorphisms
"s—p(Xp,Or Xp+1,0) = “s—p(Xp,l: Xp+l,1) == ns—p(Xp,p, Xp+1,p)'
The differential
dlp,s : Elp,s = 7ts—p(Xp,pr Xp+l,p) - E1p+l’s = '"s—p—l(Xp+l,p+l» Xp+2,p)

is the composition of the natural map

a
7ts—p(Xp,p: Xp+1,p) - 7rs—p—l(Xp+l,pr Xp+2,p)

from the exact sequence of the triple X,,5 , = X, p, = X, , with the

natural isomorphism
7':s—p—l(Xp+1, p Xpe2, p) - ”s—p-l(Xp+l, p+ls Xp+2,p+1 )-
Theorem 3.1. Under the hypotheses above, we have isomorphisms

Elp,s = LSs—2p—2(F(YP))

forany p,s 2 0.

Proof. The homotopy long exact sequence of the pair (X pp» Xp+1,p)

is naturally isomorphic to the following homotopy long exact sequence of
the cofibration of spectra:

> 1y (EPLS(F, ) > 1, (SPLE(F) ) -

1u(EPLQ, (1B, v) = 7y (EPELS(F p))) > ...
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So we can identify n,(X, 5, Xp4,p) with n,(TP*? ]LS(F(YP))). Now, the

result follows from these isomorphisms

X

EP? p+1,p)

s p(Xp, p»

Mg p(zP”Ls(F(y,,)))

n

Ms_p-p-2 (LS(F(YP)))-

Theorem 3.2. The first differential df*® : Ef'* — Ef *L8 coincides

with the composition

LSS-Zp—Z(F(.Yp)) - Ls_2p (S, (4" 1)a, u)
\L g(Yp«f-l)
Ls—2p—2(Qr (Yp+l)ﬁ» u) - LSs—2p(F(yp+l))

where the first map lies in diagram (Dl(')p ), and the last one lies in

diagram (Dl(_)pJrl ).

Proof. By the definition, the differential df"® is given by the

composition

a
ns—p(Xp, p’ Xp+1, p ) 7"s—p—l(Xp+1,p , Xp+2, p)
- ns—p—l(Xp+l,p+1, Xpi2, pil )- (3.8)

We can decompose the first map @ in the following way:

0y
“s—p(Xp,p: Xp+1,p) - “s—p(Xp+1,p) - ns-—p—l(Xp+l,p’ Xp+2,p)-
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Now, we have a commutative diagram

5}
ns—p(Xp+1,p) - 7ts—p—l(Xp+1,p’ Xp+2,p)

l 1

7ts-,1‘7(AXp+1,p+1) - "s—p—l(Xp+1,p+l» Xp+2, p+1)

where the right vertical map coincides with the second map in (3.7).
Hence we have the following decomposition of the first differential

ns—p(Xp,p» Xp+1,p) - ns—p(Xp+l,p) d 7‘:s—p(Xp«rl,pH)

- ns—p—l(Xp+l,p+1 : Xp+2, p+l)'

By notations (3.5) of spectra X}, ; and diagram (3.6) one can easily verify

that this decomposition is induced by the following maps of spectra:

TPELS(F, ;) > ZPPLR(E, ) > ZPPLQ, (178, v)

¥4
- 2 I[‘S(F(YP'”))'

The middle map of this composition is 9(7p+l) ° l(ypﬂ). Now, the result
follows from diagrams (D1), (D17), and (3.3).

The problem of describing the first differential in algebraic terms on
the level of rings with antistructures, analogously to the case of Browder-
Livesay groups, remains still open. But the above-obtained description
gives us good possibilities of computation.

Remark. It follows from Theorem 3.2 that the first differential
coincides with the generalized Browder-Livesay invariant on the image of
the map

LSu(Fp) = Lu(@. (17" )os, w).

Theorem 3.3. The differential df® : EP'S - EP*"5+71 (r > 2)

coincides with the composition
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LSs—Zp—2(F(Yp)) - Ls—2p—2(Sr (Yp+l)a’ u)
~L g(yp+l)

Ls—2p—2(Q, (Ypﬂ)a’ u')
r
Ly_35-3(S, (***?)a, u)

Y 94py

Ly_9p-3(@. (v**?)at, u)
2
\}

Ls_5p-r-1(@ GP e, u) - LSs—2p~r+1(F(Yp+’))

where the maps T denote the corresponding isomorphisms of homology
groups from diagrams (D1) and (D17), and the groups E, are considered

as corresponding subfactor groups of the groups LS.

Proof. If the map g is an isomorphism, then the result was obtained
in [18]. An arbitrary pair of maps

L@, (Y")B, v)
. 1 /
ZTILP(E, ) (3.9)
\dy
L@, (1), v)

from diagram (3.4) defines a braid of exact sequences. First, it is
necessary to construct a push-out square of spectra for diagram (3.9), and
then write down homotopy long exact sequences of the maps in this
square. Consider the following part of obtained diagrams in which the
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maps Y denote the isomorphisms of homology groups in the corresponding
members:

- nn(L(Q» B, U)) (= Ln(Q’ B, U)) -
Y (3.10)
- ﬁn(zL(Q’ B, v) (= Ln-l(Qr B, v)) -

It follows now from [18] and diagram (3.10) that the differential df**

coincides with the composition

LSs—2p—2(F(Yp)) - Ls—2p—2(Q» (,YP+1)(1, u)
Y
Ly 55-3(Q (¥***)a, u)

J (3.11)

\
Ls—2p—r—1(Qr G e, u) » LSs—2p—r+1(F(Yp+r))

There exists a natural map A of diagram (D1) to the corresponding
diagram (3.10). Hence we can write down the following diagram:

Ln+1(Q: B, U) E’ Ln+1(Q, B, U)
/ y
LP,(F) it LP(F) LY (3.12)
N N
LS you) 3 L,(Q, 1. v)

where the map Id is the identity map. The map A induces
homomorphisms of the corresponding homology groups, which we denote
by A,. Let x be an element of the group L, (@, B, v) representing the

class [x] of the homology group. It follows now from diagram (3.12) that
the class Yo A,([x]) is represented by the element Y oId(x) = Y(x) =
g,I'(x). We have a similar result for the map I'", too. Now, diagram

(3.11) and Theorem 3.2 imply the statement.
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4. Natural Maps of Spectral Sequences

In this section, we describe some natural maps of spectral sequences
which connect our surgery spectral sequence with that introduced by
Hambleton and Kharshiladze in [18]. Denote by

(R, o, u) Ei) (R, o, u)

v = i i
(S, a, u) M (S, a, u)

and

(P,Bv) > (P.Bv)
®=| lJ Vi
@.Bv) - (@B

the geometric diagrams constructed by using geometric diagram (2.1).
Then there exist natural maps of these diagrams

v 3F 5o 4.1)

By using the construction of Section 3, we can obtain surgery spectral
sequences for every square from (4.1). In this section, we shall

denote these spectral sequences as {yEP'9, d,}, { FEF'?, pd,}, and
{oEP'Y, od,}, respectively. The spectral sequences { yE9, yd,} and

{oEP'9, od,} coincide with the restricted spectral sequence of

Hambleton and Kharshiladze [18] in the case when the diagram F is the

diagram of antistructures arising from the splitting problem for an one-

sided submanifold.

Diagrams (D1) and (D17) are natural under morphisms of squares of
antistructures (2.1), and the maps in (4.1) induce the maps of the
corresponding push-out squares (3.1) and (3.2) of spectra. Hence the maps
in (4.1) induce the maps of diagrams (3.4) which we can write down as the
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following commutative diagram:

LS,o,u) - L@QBv) - L@QBv

/ / /
LP(¥) - SLP(F) - SLP(dD)
N N N\
ZL(S, yo, u) - ZL@ B, v) - ZL(Q, yB, v) 4.2)
/ / / ’
TELP(Y,) - Y2LR(F,) - ZZLP(®,)
N N N\

YIS, o, u) > TPL@ Bv) - I2L@, B, v)

Each column of diagram (4.2) gives the homotopy commutative
diagram of spectra corresponding to diagram (3.6). We shall denote the
spectra fitting in these diagrams by Y ;, X; ;, and Z,;, respectively.

The pull-back construction is natural. Hence we obtain the natural maps

Gy Ex
Yo > Xp1 > Z,

induced by maps in (4.2), which give the natural maps of commutative
diagrams (3.6). In particular, we obtain two morphisms of filtrations. In
fact, the map o induces a map of the filtration

o> Y30 > Y0 > Y0 Yoo 4.3)
into the filtration
= X309 > X390 > X10 o Xo,0 4.4)
and the map ¢ induces a map of filtration (4.4) into the filtration
> Z3 g > Zg g > Zy9 > Zg,p- (4.5)

From this the following result follows.

Proposition 4.1. The maps in (4.1) induce the morphisms of spectral
sequences

[+ 7% £
{$EPT, wd,} > {FEP?, pd,} > {oEP?, od,}.
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5. Morphisms of Quadratic Extensions

From an algebraic point of view the assumption that the horizontal
maps in (2.1) are epimorphic is not natural. Really, it is possible to
construct some spectral sequences for an arbitrary morphism of twisted
quadratic extensions of antistructures. In this section, we consider square
(2.1) without the condition that the horizontal maps are epimorphisms. In
this case the horizontal maps give a morphism of quadratic extensions

(see [25], [26], and [29]). The square F in (2.2) is defined, and hence we
can construct the following homotopy commutative diagram of spectra

- — > L(R) > L(P) > L(f) >
o ——— L(S) > L(Q) > L(3) > (5.1)
5 L) > L(7) > L(F) —— -

The rows and columns of this diagram are cofibrations. For the spectra in
(5.1) we have

7, (L(R)) = L;y(R, &, &), n;(L(S)) = Ly(S, &, i),

7, (L(P)) = L;y(P, B, D), (L@)) = Li(Q, B, 7).

Now, we can define a spectrum LS(F) as the homotopy cofiber of any of

the following maps (see [29]):
Q%L(F)— L(R), QL(S)—— QL(7), QI(P)——> QL(G) (5.2)

which are the compositions of maps in diagram (5.1). We remark here
that this definition formally coincides with that of splitting obstruction
groups, but it has no relations with geometry. In a similar way (using the
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naturality of the transfer map), it is possible to construct the following
homotopy commutative diagram of spectra (see [29]):

! Lo

e LS)) —— L(@,) —— L(g,) —> -

! Lo

—s L(R) > L) —— L(f) —— - (6.3)

‘l’ v 4

s L) —> L(j}) —— L(F') —— -

J’ v N

in which i; and j; are transfer maps. Now, the spectrum LP(F) is

defined as the homotopy fiber of any of the following maps:
QL(f) ——> LGy), LS,)—— L(P), QL(j})——L(g,) (5.49)

which is obtained as composition of maps in diagram (5.3).

If we begin our considerations from the square (F,) and then
construct the square (F, )y = F, we shall obtain the spectra LP(Fy) and
LS(F,).

Proposition 5.1. For the spectra considered above, pull-back
diagrams (3.1) and (3.2) of spectra are also defined.

Proof. The existence of the first diagram was proved in [35]. The
result for the other diagram can be obtained in a similar way.

We can now repeat the construction of Section 3 to obtain the
following:
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Theorem 5.2. For any morphism (2.1) of quadratic extensions of
antistructures there exists a spectral sequence with

Elp,s = ns—2p—2(LS(F(YP)))1

where the spectrum LS is defined above. Furthermore, the differentials of

this spectral sequence can be described in the same way as done in Section
3.

Iet i:n — G be an inclusion of index 2 between groups with
orientation. If R and R' are rings with unity, then any ring
homomorphism ¢ : R — R’ defines a morphism of quadratic extensions

R[lr] - Rfx]
d ) (5.5)
R[G] - RG]

where any group ring is equipped with the standard antistructure, i.e.,
u=1 and the anti-automorphisms coincide with the standard
involutions. Hence, the spectral sequence is defined for square (5.5). It
should be interesting to understand which properties of the maps ¢ and ¢
can be described by this spectral sequence. In fact, a square of type (5.5)
arises naturally in the computation of Wall’s groups, where R = Z and

R = 22 (see [34] and [35]). In this case, the corresponding spectral

sequence is closely related to the computation of L-groups and natural
maps in L-theory.
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