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On the Equivalent Spines Problem.

A. CaviccHIOLI - W. B. R. LICKORISH - D. REPOVS (*)

Sunto. — S¢ costrutscono esempi di 3-varietd compatte, connesse ed orientabi-
li (regolarmente immerse nella 3-sfera S*) con bordo connesso di genere
2 2 che non sono omeomorfe ma ammettono la stessa spina. Questo risol-
ve un problema posto in [4].

1. - Introduction.

It was shown in [2], [3] and [14], using very different arguments
and techniques, that there exist nonhomeomorphic compact 3-mani-
folds M;cS?3, ¢=1,2, with boundary oM, = S§* x S! such that M; col-
lapses onto the same spine.

The following question has been posed in {4].

QUESTION. — Do there exist nonhomeomorphic compact connected
3-manifolds M; in the 3-sphere S3 i=1,2 with connected boundary
oM, =JM, of genus =2 such that M, and M, have the same spine
and the fundamental group IT,(M,) =1I1,(M,) is not a nontrivial
Sfree product?

Note that in general one cannot get examples by simply drilling
extra holes in the 3-manifolds with genus one boundary constructed
in the quoted papers since the resulting spaces may become homeo-
morphic. Furthermore, these changes might yield manifolds whose
fundamental groups are nontrivial free products so the question is
open in the general case.

(*) Work performed under the auspicies of the G.N.S.A.G.A. of the
C.N.R. (National Research Council) of Italy and partially supported by the
Ministero per la Ricerca Scientifica e Tecnologica of Italy within the project
«Geometria Reale e Complessa» and by the Ministry for Science and Techno-
logy of the Republic of Slovenia Research Grant No. P1-0214-101-94.
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Also note that the case of genus zero (suitably reformulated) is
related to the unresolved status of the Poincaré conjecture (for more
details see [2] and [18]).

This paper is devoted to giving an affirmative answer to the
above question, and is organized as follows. In Section 2 we shall
study the homeomorphism type of certain classes of compact 3-mani-
folds with connected boundary, called 8-manifolds, and answer our
question. Section 3 deals with the combinatorial representation of
bordered 3-manifolds by spines corresponding to finite group pre-
sentations. In Section 4 we shall construct 2-complexes that are
spines of precisely two 3-manifolds of the previous type.

Concepts and notations from piecewise-linear (PL) topology are
standard, and can be found for example in [20]. The prefix PL will be
omitted. For a general reference on 3-manifold topology see [6], [7],
[8] and [12]. All manifolds will be connected and compact. For classi-
cal knot theory we refer to [1], [11] and [19].

2. - f-manifolds.

Let K be an oriented knot in the oriented 3-sphere S%. Then K
will denote the image of K under an orientation reversing homeo-
morphism of S2. In particular, K can be obtained as the mirror-im-
age of K by reflecting K across a plane. The result of reversing the
orientation of X is called the inverted knot of K, written K. A knot K
is said to be invertible if K =rK (here = means equivalence of knots
by means of ambient isotopy in S%), and amphicheiral if K =K. Re-
call that the exterior X of K is the closure of the complement of a reg-
ular neighbourhood of K in S and that K is called simple if X is
atoroidal, i.e. any incompressible torus in X is boundary parallel.

Let 8(K,, K;,K3) be the oriented 8-curve embedded in S® with its
three arcs knotted according to the oriented knots K;, K, and Kj, as
shown in Figure 1.

Let M(K,,K,,K;) be the closure of the complement of a regular
neighbourhood of this graph in S%. Then M(K,,K,,K;) is an irre-
ducible 3-manifold, with boundary of genus two, inheriting an orien-
tation from S%. Any such manifold will be called a 6-manifold.

The Torus Decomposition Theorem (which is part of the theory of
characteristic varieties) for a compact irreducible 3-manifold M as-
serts the following (see [8], [9] and [10]). In M there exists a collec-
tion of incompressible tori that separate M into atoroidal or Seifert
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Figure 1. — The oriented §-curve 6(K,, K;, Kj3).

fibered components. The collection is minimal with respect to this
property, and is unique up to ambient isotopy.

Suppose that K;, K, and K; are simple oriented knots. Then the
decomposing tori for the 6-manifold M(K,, K,,K3) are T,, Ty and T3
as shown in Figure 2.

These tori separate M(K,, K, K3) into four components. Three of
them, X;, X, and X; say, are copies of the exteriors of the three knots
and the fourth is a genus two orientable handlebody less three stan-
dard unknotted solid tori. The components X;, 1=1,2,38, are given as
atoroidal. The fourth component is easily seen to be atoroidal and it
is not Seifert fibered (as it has a genus two boundary component).

THEOREM 2.1. - Let K; and K{, 1=1,2,8, be oriented simple knots
in the oriented 3-sphere S and let M(K,,K,,K3) and M(K,,K; ,K3)
be the corresponding 0-manifolds. Suppose that

h:M(K,,K,,K3) >M(K{,Kz,K3)

is an orientation preserving homeomorphism.
Then either

{KI’K27K3}={K1’!K2,’K3,} or {Kvi27K3}={TK1')TK2'1TK3'}'
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Figure 2. - The decomposing tori for the #-manifold M(K,, K;, K3).

PROOF. — After an ambient isotopy (if necessary) we can assume
that a(T;) = T}, for some j, where Ty, T; and T; are the decomposing
tori for the 6-manifold M(K/,K,,Ks). This is an immediate conse-
quence of the uniqueness part of the above-mentioned theorem. It
may be also assumed that j =1, changing the notation if necessary.
Of course, it follows that A(X;) = X, where X; is the copy of the exte-
rior of K; in M(K/,K,,K3). Now, the result that knots are deter-
mined by their complements (see [5]) asserts that the unoriented
meridian and longitude of a knot complement are well-defined. Thus
h maps the meridian of X; to that of X/, i=1,2,3, either preserving
or reversing orientation. However the oriented meridians of X,, X,
and X; represent elements of the first integral homology group of
M(K,,K,,K;) that add up to zero and satisfy no other relation. The
meridians of X/, X; and X3 have a similar property. Thus if % revers-
es the direction of one meridian, then it reverses them all. As £ is an
orientation preserving homeomorphism, if it reverses a meridian,
then it also reverses the corresponding longitude. Thus either
K, =K/ or K; =rK| for each i =1,2,3. This completes the proof. =
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REMARKS. - (1) The converse of the theorem is clearly true; if the
triples of knots are the same, then so are the oriented 8-manifolds.

(2) If k is permitted to be orientation reversing, then the re-
sult can be applied to {K;,K,K;}. The given §-manifolds are equiva-
lent by an orientation reversing homeomorphism if {K,,K;,K3} is
equal to {K{,K;,Ks} or {rK|,rK;,rKj3 }.

(3) It is not necessary to insist that the knots K; be simple. If
they are not, then the decomposing tori of the components X; must
be briefly mentioned, but 4(9X;) = 9X;, for some j, as pieces with a
genus two boundary component must correspond under h.

(4) The argument of the theorem generalizes to consideration
of » knots inserted into the arcs of a graph of two vertices joined by
n edges.

(56) The full power of [5] is only needed if general knots are to
be considered. Specific examples (see Section 4) can be constructed
using knots known, by elementary means, to be determined by their
complements.

COROLLARY 2.2. - Let K be a simple oriented knot in the oriented
3-sphere S® Let My, My, M3 and M, be the 8-manifolds constructed
as above from the following sets:

(i) {K,K,K},
(i) {K,K,rK},
(i) {K,rK,rK},

(iv) {rK,rK,rK}.
If K=7K, then these manifolds are trivially all homeomorphic.
Otherwise, up to orientation preserving homeomorphism,
M,=M,#=M,#M;,
and M, =M, and M, = M, if and only if K = K. If orientation revers-
ing homeomorphism is also permitted, then
My =M,=M;=M,.
In paﬁticular, for a trefoil knot K, the 6-manifolds M(K, K, K) and
M(K,K,K) are not homeomorphic since K is invertible but nonam-
phicheiral. However these manifolds have homeomorphic 2-dimen-

sional spines as shown in Theorem 2.3 below. They are also irre-
ducible, have incompressible boundaries and hence their fundamen-
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tal groups are not nontrivial free products (see Theorem 7.1 of [6]).
This answers the initial question.

THEOREM 2.3. — Let K, , K, and K be oriented knots in the orient-
ed 38-sphere S Then the O-manifolds M(K,,K,;,K;) and
M(K,,K,,7K;) both collapse to homeomorphic copies of the same
2-dimensional polyhedron.

PROOF. — Let U denote the unknot in S® and, as usual, let X; be
the exterior of K;. The #-manifold M(K;, K,,K;) can be regarded as
M(K,,K,,U) U X, with M(K,,K,,U) NX; being an annulus in the
boundary of each part. However, that collapses to a copy of
M(K,,K,,U)UX; with M(K,,K,,U)NX; being a simple closed
curve 6, a meridian of X; and the core of the annulus, in the boundary
of each part. Similarly, if X; is the exterior of rKj, then
M(K,,K,,rK;) collapses to a copy of M(K,,K,, U)UX; with
M(K,,K,,U)NX; being the same simple closed curve & in
8M(K,,K,,U). There is a homeomorphism X; — X; that is the identi-
ty on ¢; it is, essentially, reflection across the plane of d. That ex-
tends, by the identity map, to a homeomorphism

M(K,,K,,U) UX;—>M(K,,K,,U) UXg

(this referring to the copies in which the intersections are just the
simple closed curves). Of course further collapsing will reduce this
polyhedron to dimension two as requested. ®

3. — Group presentations and spines.

For a standard 2-complex =2, an algorithm was exhibited in [15]
for recognizing =2 as a spine of some closed connected orientable
3-manifold. The procedure was extended in [2] to the boundary case.

Let & be a group presentation with g generators a,,a,,...,a, and
k relators 7y, 7g,...,7, Where g=k. Let ¥, denote the canonical
2-complex of &, with one vertex v, g 1-cells and k 2-cells. Then
IT,(Z,) is presented by &.

It is well-known that X; has a 3-dimensional thickening if and
only if it is possible to draw 2-sided curves a; on the boundary of a
handlebody V with g handles (one handle for each generator a;) such
that a; reads r; on V (see for example [7]). Obviously, the (k + 1)-tu-
ple (V;ai,as,...,a;) is a Heegaard diagram of the bordered 3-mani-
fold M3 =M?3(Z,;) (see [6] for the theory of Heegaard splittings).




ON THE EQUIVALENT SPINES PROBLEM 781

If we cut each handle of V, then the curves a; give rise to arcs
running on a 2-sphere with 2¢ holes D;, D;, i=1,2, ...,g. Let e (resp.
ef), B=1,2,...,y(i), denote the intersection points of oD; (resp.
8D;)—the boundary of the thickened i-th cutting disc—with the
curves a,. For each ¢, they are assumed to be ordered clockwise (re-
sp. counterclockwise) according to an orientation of the 2-sphere.
Identifying D; with D; such that each e? covers ef yields the previous
Heegaard diagram of M3,

Let E denote the set consisting of all points ¢/ and &%, and define
the following three permutations 4, B and C on £:

(i) A is the product of the disjoint transpositions interchang-
ing the endpoints of the ares arising from a;;

(ii) B is the involutive permutation given by setting
B(ef) =¢;

g
(i) C= [1(e}...e?P)Er®...8}).
i=1

If p, is a permutation of £ (s=1,2,...,t), then the symbol
| D1, D2, ..., P | represents the number of the orbits of the group gen-
erated by py, ps,...,P:.

The following result was proved in [15] for closed 3-manifolds
and extended in [2] to the boundary case.

THEOREM 3.1. — Let & be a group presentation with g generators
and k relators, where g =k, and let X, be the canonical 2-complex of
&. Then Z ;5 is a spine of a compact connected orientable 3-manifold
M =M(A, B,C) with nonvoid boundary if and only if

|A| - |C| +2=]AC]|.

The number of components of OM equals |AC, BC|. If M is connect-
ed, then it is the closed orientable surface of genus g — k.

The permutations A and B are uniquely determined by the group
presentation &. The search (possibly by computer) of all permuta-
tions C’s satisfying the relations of Theorem 3.1 yields all bordered
orientable connected 3-manifolds (possibly with repetitions) having
the same spine X,.
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4. - Equivalent spines: examples.

Let K be the trefoil knot in S% and let M = M(K, K, K) be the cor-
responding @-manifold defined as in Section 2. Applying the
Wirtinger algorithm gets a presentation for I7,(M) with six genera-
tors and four relators (use Figure 3):

(M) = (2;,9:,1=1,2,3: gm0 'y e =1, 1=1,2,3,

Y1Y2ys=1).

By setting as usual a; =x;%; and b; = ;%7 ¢ =1, 2,3, we obtain the
following equivalent presentation & for IT,(M):

3’=<a,-,b,-,i=1,2,3: afbi_2=1, i=1,2,3,
al-lblaz—lbzag_lbg = 1).

It is easily seen that @ arises from the RR-system shown in Figure 4
(for the theory of RR-systems we refer to [16] and [17]). This con-
firms that the canonical 2-complex X, corresponds to a spine of a
connected orientable 3-manifold with boundary. In particular, it cor-
responds to a spine of the @-manifold M(K,K,K) by construc-
tion.

Now we apply the algorithm discussed in Section 3 to determine

I3

Figure 3. - The oriented 6-curve 6(K,K,K), K thefoil knot.
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Vi
N

Figure 4. — An RR-system inducing the group presentation .

all (nonhomeomorphic) orientable prime 3-manifolds with boundary
which admit X, as spine.

THEOREM 4.1. — Let @ be the finite group presentation
9=(a,b,i=1,2,3: adb?=1, i=1,23,
ar'biag 'byay by =1),

and let 3, be the canonical 2-complex of P. Then any orientable
connected 3-manifold with nonvoid connected boundary having %,




784 A. CAVICCHIOLI - W. B. R. LICKORISH - D. REPOVS

as spine is homeomorphic to one of the two 6-manifolds M(K, K, K)
and M(K,K,K), where K is the trefoil knot and K is its mirror-im-

age.
REMARKS. — (1) One can immediately produce other examples

substituting the trefoil knot by an arbitrary invertible nonam-
phicheiral knot.

(2) From Theorem 4.1 we also construct examples with bound-
ary of arbitrarily large genus. It suffices to use the group presenta-
tion

{P=(a,-,bi,i=1,2,...,g: af‘b[2=1, i=1,2,...,g,
o thyas thy...a b, =1).

PROOF OF THEOREM 4.1. — Let us denote the oriented 1-cells of X,
by a;, b;, 1=1,2,3, and the 2-cells of X, by ¢;, 1=1,2,8, and d. Then
de; and 3d are attached to the wedge

3 3

=P=VaV Vb,
by the words afb;,"2 and a; b, a; ' byag ! by, respectively. The set £
consists of 42 elements, two for each occurrence of a generator in
the relators of #. Suppose we number these elements as shown in
Figure 5 so E is identified with the set
E={1,2,...,21,1,2,...,21}.

Then we have

A=(I 2)2 3)3 B)5 6)6 1)(13 8)B 9)9 10)10 12)(12 13)(15 16)

(16 17)(17 19)(19 20)(20 15)(4 7)(7T 11)(11 14)(14 18)(18 21)(21 4),

B= f_lll(i 1)
and C acts cyclically on the orbli;, sets
{1,2,8,4} caD,, e;=a,ND,,
(1,2,3,3) oD, 6,=a,N Dy,
{8,9,10,11} c3D,, es=a,ND,,
{8,9,10,11} c 3D, &, =ay N Dy,
{15,16,17,18} cD3, e3=ua3N Dy,
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{15,16,17,18} c8Ds, e =azN D3,

{5,6,7}caD], el =bN DY,
{5,6,7} coD;, z, =b,NDj,
1 es =b,N D3,

e =b,N Dj,

[

Figure 5. — The canonical 2-complex 7.
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Figure 6. - An Heegaard diagram for the 6-manifold M(K, K, K), K trefoil
knot.

{19,20,21}c8DJ, e =byN Dy,

{19,20,21} coD;, & =by N Dj.
Since the cyclic orderings induced by C on 3D;, 3D;, 3D; and 3D;
must be opposite, we have exactly 6%-2° = 1728 cases for C. By a com-

puter program, we have verified that the permutations C’s satisfy-
ing the formula

|A] - |C] +2=21-12+2=11=|AC]|

are exactly the following four (and their inverses which yield the

Figure 7. - An Heegaard diagram for the #-manifold M(K, K, K), K trefoil
knot and K its mirror-image.
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same manifolds) according to Corollary 2.2:

C;=(1234X56 789 10 11)(12 13

(432 1X7 6 5)9 10 11 8)(13 14
Ci=(123 4)5 6 7X8 11 10 9)(12 14

(4 32 1)7 6 5)9 10 11 8)13 14

14)(15 16

12)(16 17
13)(15 16

18)(19 20

15)20 21
18)(19 20

787

21)

20)

19),
21)

19),
20)

19).

Hence there exist only two distinct 6-manifolds, i.e. M(X, K, K) and
M(K,K,K), where K is the trefoil knot and K is its mirror-image (use
Corollary 2.2). Now it is easily checked that A and C; generate a
transitive group and that AC; and BC; also generate a transitive
group, so dM(A, B,C;) is the orientable closed connected surface of
genus two. The induced Heegaard diagrams (full outside) of the
@-manifolds M(A,B,C;)=M(K,K,K) and M(A,B,C,) =M(K,K,K)
are drawn in Figures 6 and 7, respectively. They are related by a
twist move of the type considered in [12] and [13]. This completes the

proof. ®
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