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Abstract: We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological
manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old
problem in general topology concerning homogeneous spaces.
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1. Introduction

A topological space X is said to be homogeneous if for every pair of points x, y ∈ X there exists a homeomorphism
h : (X, {x})→ (X, {y}). This very classical topological notion became very important when in the 1960’s Bing and Borsuk
proved that in dimensions below 3, homogeneity can actually detect topological manifolds among all finite-dimensional
absolute neighborhood retracts (ANR’s).

Bing and Borsuk also conjectured that this is true in all dimensions, and this conjecture remains a formidable open
problem (in dimension 3 it implies the Poincaré Conjecture). Recently, homogeneity has gained renewed attention among
geometric topologists, since it turned out that the so-called Busemann G-spaces (which have also been conjectured to
be topological manifolds) possess homogeneity among other key properties [9, 17].
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It was in our recent investigations of Bing–Borsuk and Busemann Conjectures that we came upon some observations
on the homogeneity of products of nonhomogeneous spaces which we have collected in the present paper. In particular,
we give (uncountably many) connected nonrigid finite-dimensional positive answers to the following question from
[4, § 1.7] listed on p. 125: “Is there a nonhomogeneous (compact) space whose square is homogeneous?” Clearly, there is
a dimensional restriction to such examples, namely n ≥ 3.

Several positive answers to this question are already known. In 2003 a nonconnected example was given by Rosicki [26]
in the realm of topological groups. Earlier, an infinite-dimensional connected rigid example was constructed by van Mill
[21] in 1981, whereas in 1983 Ancel and Singh [2] constructed finite-dimensional rigid examples of X with dimX ≥ 4
and Ancel, Duvall and Singh [1] produced such an example also for the case dimX = 3. Recall that a space is said to
be rigid if it does not have any self-homeomorphism other than the identity.

The results in this paper provide alternative finite-dimensional answers to the question above which are easier to
construct than the rigid ones, as a straightforward application of the theory of decompositions of manifolds.

In a more general setting, we say that a space X is k-homogeneous, k ≥ 2, if for any given k-element sets {x1, . . . , xk}
and {y1, . . . , yk}, there exists a homeomorphism h : X → X such that h(xi) = yi for i = 1, . . . , n. The case k = 2 is
simply referred to as bihomogeneity. Our results can also be used to get examples of manifold factors that fail to be
bihomogeneous and (k ≥ 3)-homogeneous since any of them implies homogeneity.

2. Wild cells of arbitrary dimensions and codimensions

In geometric topology, a wild k-cell in Rn, 0 < k < n, is a topological embedding of the unit k-ball of Rk which cannot
be mapped onto the canonical embedding Bk ⊂ Rk ⊂ Rn by a homeomorphism of Rn onto itself. First examples of wild
1-cells in R3 (called wild arcs) were constructed by Artin and Fox [15]. In fact, there are uncountably many wild arcs
[16, 20, 22]. In [22] different arcs were distinguished by the fundamental groups of their complements: i.e., two arcs α ,
β are not equivalent if and only if π1(S3 \ α) 6∼= π1(S3 \ β). Recall that two arcs are called equivalent if there is a
self-homeomorphism of R3 taking one arc to the other. Notice that we can consider these arcs to be wild also in S3.

Well-known methods based on elementary properties of the suspension of a space lead to the construction of wild cells
in arbitrary dimensions. To illustrate this we shall give some details. Let F3,1 be any uncountable family of wild arcs
in S3 such that their complements in S3 are not simply connected (for instance, the one given in [22]), and let α ∈ F3,1.
Then for each k ≥ 1 one can construct from α a sequence of wild arcs (αk ) ⊂ S3+k . Indeed, if we already have a wild arc
αk−1 in S3+(k−1), then by [11, Corollary 2.6.4], the sphere S3+k is homeomorphic to the suspension of the quotient space
S3+(k−1)/αk−1.

Now, using [11, Lemma 2.7.2], let αk be the arc in S3+k that corresponds to the suspension of the class of points of αk−1

in the quotient S3+(k−1)/αk−1. Notice that S3+k \ αk is homotopically equivalent to S3+(k−1) \ αk−1, hence αk is wild. So
for each n ≥ 3, there is a family Fn,1 of uncountably many distinct wild arcs in Sn.

Given n ≥ 3 and 0 < k < n, let α be a wild arc in Sn−k+1 from the collection Fn−k+1,1. By [11, Lemma 1.4.1], the
(k − 1)-th suspension Σk−1α of α is a wild k-cell in Sn. Hence, for each n ≥ 3 and 0 < k < n, there is a family Fn,k of
uncountably many wild k-cells embedded in Sn. Notice that the k-cells in Fn,k are cell-like non-cellular sets, for n ≥ 3
and 0 < k < n (the failure of cellularity follows from [11, Exercise 2.7.4] and [27, Exercise 2.6.2 (a)]). As above, these
k-cells can be taken to be embedded either in Rn or in Sn.

3. Products of generalized manifolds

A generalized n-manifold X is defined as a finite-dimensional Euclidean neighborhood retract (ENR) whose local
Z-homology groups agree with those of the Euclidean n-space, i.e.

H∗(X, X \ {x};Z) ∼= H∗(Rn;Rn \ {0};Z) for all x ∈ X.
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By [24, Theorem 6] and [7], if X k×Y l is a homology n-manifold then X k and Y l are homology k- and l-manifolds,
respectively, where k + l = n; see also [6, Theorem 2].

Also, by [19, Problem K.3, p. 30], X ×Y is a metrizable ANR if and only if X and Y are metrizable ANR’s. Combining
both results we get the following:

Proposition 3.1.
If X k×Y l is a generalized (k + l)-manifold then X k and Y l are generalized k- and l-manifolds, respectively.

4. Examples

Unless otherwise stated, all manifolds in this section will be assumed to be connected.

Theorem 4.1.
There exist uncountably many distinct topological n-manifolds Mn such that Mn = X ×Y , where X is a nonhomogeneous
nonmanifold factor, if and only if n ≥ 4.

Proof. (⇐) If n ≥ 4, then by [3, Theorem 1] it suffices to pick any wild arc α ⊂ Rn−1 such that Rn−1 \ α is not
simply connected, from the family Fn,1 defined in Section 2, and consider the quotient space Xn−1 = Rn−1/α . Then
Xn−1 is a generalized (n − 1)-manifold with one singular point (hence a nonhomogeneous space), since the space Xn−1

fails to be locally Euclidean at π(α) ∈ X , where π : Rn−1 → Xn−1 = Rn−1/α is the quotient map. On the other hand,
X ×R is homeomorphic to Rn, so Xn−1 is an n-manifold factor. By letting α range over the uncountable family Fn,1, we
obtain uncountably many distinct examples. Moreover, if one wants to obtain a closed manifold M, one just observes
that (Sn−1/α)×R is an n-manifold, and so (Sn−1/α)×S1 is a closed n-manifold.

In a similar way, but in a more general setting, one can apply [8, Theorem 1.1]: Let D be any k-cell in the family
Fn,k defined in Section 2, with n ≥ 4 and 0 < k < n. Then (Rn−1/D)×R is homeomorphic to Rn. Again, the space
X = Rn−1/D is not a manifold since it has a unique singular point which makes the space nonhomogeneous. By varying
D in Fn,k we get uncountably many distinct examples.

(⇒) Let n ≤ 3 and Mn = X k×Y l so that k + l = n. Then by Proposition 3.1, X k and Y l are generalized k- and
l-manifolds, respectively. Since M is connected, we may assume that 0 < k and l < 3. Hence these low-dimensional
generalized manifolds X and Y are actually genuine manifolds, see [25] or [29, Chapter IX], and are therefore also
homogeneous.

Remark 4.2.
For n ≥ 5, more examples can be constructed. Given a topological (n − 2)-manifold Mn−2 choose any cell-like usc-
decomposition G such that Xn−2 = Mn−2/G is finite-dimensional. (This dimensionality condition is necessary due to
examples of Dranishnikov [12] and Dydak–Walsh [13].) By [10, Theorem 26.8], Xn−2×R2 has the Disjoint Disks Property
and hence, by Edwards’ Theorem, see e.g. [17, Theorem 2.2],

Nn = Xn−2×R2

is a topological n-manifold, whereas X is nonhomogeneous if one assumes that the singular set is not dense in X , i.e.
S(X ) 6= X . Here S(X ) denotes the singular set of X , i.e., the set of all points in X having no Euclidean neighborhood.

Theorem 4.3.
There exist uncountably many topological 2n-dimensional manifolds M2n such that M2n = X ×X, where X is a nonho-
mogeneous manifold factor, if and only if n ≥ 3.
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Proof. (⇐) For n ≥ 3, we apply [5, Corollary 3], see also [28], to a cell-like decomposition G of a manifold M of
dimension dimM ≥ 3 in order to obtain that (M/G) × (M/G) is homeomorphic to M×M. Hence, it is enough to take
M = Sn and G to be the cell-like decomposition, whose only nondegenerate element is one of the k-cells from the family
Fn,k defined in Section 2.

(⇒) Let n ≤ 2. Given N2n = X ×X , then (as above) it follows by Proposition 3.1 that X is a generalized n-manifold.
Therefore, for n = 2, X is a generalized 2-manifold and hence a surface; while for n = 1, X is a generalized 1-manifold
and hence a circle. Recall that (n < 3)-dimensional homology manifolds are genuine manifolds [29, Chapter IX].

Remark 4.4.
In fact, Bass’ result used in the proof of Theorem 4.3 shows that given two manifolds of dimensions greater than or equal
to 3 and cell-like decompositions G and G′ of M and N, respectively, satisfying certain mild conditions, it follows that
M×N ∼= (M/G)× (N/G′). Hence, these constructions provide affirmative answers in all dimensions greater than or equal
to 6 to the second question from [4, § 1.7, p. 125]: “Can the product of two nonhomogeneous spaces be homogeneous?”

5. Epilogue

Question 5.1.
What can one say about homogeneous continua with nonhomogeneous factors in arbitrary dimensions? More explicitly,
we state the following questions:

(1) Can an (n ≤ 3)-dimensional homogeneous continuum K be written as a product K = X × Y , where at least one of
the factors X and Y is not homogeneous?

(2) Can an (n ≤ 5)-dimensional homogeneous continuum K be written as a product of two nonhomogeneous factors?

(3) Can an (n ≤ 5)-dimensional homogeneous continuum K be written as K = X ×X , where X is not homogeneous?

Question 5.2.
Does the Logarithmic Law hold for homogeneous compact ANR’s, i.e. does the following equality hold:

dim (X ×Y ) = dimX + dimY ?

According to the proof sketched in [14], the so-called Pontryagin surfaces Tp are homogeneous. Recall that these
celebrated compacta, which have the property that dimTp= 2 for all prime p, but dim (Tp × Tq) = 3, whenever p 6= q,
show that the Logarithmic Law fails if X and Y are not ANR’s. Recent work [9] was believed to lead to a positive answer
to Question 5.2, see [14]. However, last year Bryant discovered a serious gap in the proof of [9, Theorem 2].

Remark 5.3.
The most famous problem still open in decomposition theory is the classical R.L. Moore Problem from the 1930’s, con-
cerning the characterization of topological n-manifolds. It asks if that every (finite-dimensional) cell-like decomposition
Rn/G of Rn is a topological factor of Rn+1, i.e.

(Rn/G)×R ∼= Rn+1

(see [18] for a recent survey on this difficult problem).
In connection with the Moore Problem we mention [23, Problem 9.5], which asks if the product of a homology manifold
and R is always homogeneous? Many examples (in particular, those in Theorems 4.1 and 4.3) give partial affirmative
answers to both of these questions, but there are still far more examples to be considered.
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