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1. Introduction

Max-plus convex sets were introduced in [1]. Max-plus convex cones also appeared in idempotent analysis, following
the observation by Maslov that solutions of the Hamilton-Jacobi equation associated with a deterministic optimal control
problem satisfy a “max-plus” superposition principle and therefore belong to structures similar to convex cones which are
called semimodules or idempotent linear spaces [2]. In the last decade the interest in max-plus convex sets increased due
to the development of the so-called “idempotent mathematics”, which is a part of mathematics where usual arithmetic
operations are replaced by idempotent operations. Our paper is devoted to hyperspaces of max-plus convex subsets in
Tychonov powers of the real line. The results of the first-named author cover the case of R", n > 2.

The topology of hyperspaces of compact and closed convex sets has been investigated by several authors. The classical
result of Nadler et al. [3] asserts that the hyperspace of convex compact subsets of R", n > 2, is a contractible Q -manifold
homeomorphic to Q \ {*} (recall that a Q-manifold is a manifold modeled on the Hilbert cube Q = [0, 1]®). Their result
has found many applications in convex geometry. In particular, it enabled the proof that the hyperspace of all compact
strictly convex bodies is homeomorphic to the separable Hilbert space £2 (see [4]). Hyperspaces of compact convex subsets
of Tychonov cubes were investigated in [5].

Let Rpax = RU{—o0} and let 7 be a cardinal number. Given x, y € R* and A € R, we denote by x @ y the coordinatewise
maximum of x and y and by A © x the vector obtained from x by adding X to each of its coordinates. A subset A in R” is said
to be tropically convex (or max-plus convex)ifa ©a® B O b € Aforalla,b € Aand @, € Rpax Witha @ 8 = 0.

We denote the hyperspace of all nonempty max-plus convex compact subsets in R* by mpcc(R"). Note that every max-
plus convex compact subset in R” is a subsemilattice of R* with respect to the operation . In particular, maxA € A for any
max-plus convex compact subset A in R*.
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Tychonov powers R7, for t > w, are the main geometric objects of the theory of noncompact nonmetrizable absolute
extensors. The main result of our paper is that the hyperspace of max-plus convex subsets in the spaces R* is homeomorphic
toR" if T € {w, w1}.

2. Preliminaries

The set R U {—oo} will be endowed with the metric o, o(x, y) = |e* — ¥| (conventions: e = 0 and In0 = —o0). We
denote the set of all nonempty compact subsets of a metric space (X, d) by exp X. The base of the Vietoris topology on exp X
consists of the sets of the form

(Ur,...,Up) ={AcexpX |ACUL, Uy, ANU; £ ¢, foralli=1,...,n},

where Uy, ..., U, run over the topology of X.
If X is a metric space, then one can endow exp X with the Hausdor{f metric dy:

dy(A,B) = infle > 0 | A C O,(B), B C 0.(A)}

(hereafter, O,(C) will denote the r-neighborhood of C € expX). It is well-known that equivalent metrics on X generate
equivalent Hausdorff metrics on exp X.

By ANR (resp., AR) we shall denote the class of absolute neighborhood retracts (resp., absolute retracts) for the class of
metrizable spaces, i.e. the class of metrizable spaces X satisfying the following property: for every embedding i: X — Y
into a metrizable space Y there exists a retraction of a neighborhood of i(X) in Y (resp., a retraction of Y) onto i(X).

We say that a metric space X satisfies the strong discrete approximation property (SDAP) if for every continuous function
g: X — (0,00) and every map f: [[r-,I" — X there existsamapg: [ [r-;I" — X such that d(f(x), g(x)) < e(x),x €
]_[ﬁil I", and the family {g(I") | n € N} is discrete (d denotes the metric on X). The following is a characterization theorem
for ¢2-manifolds.

Theorem 2.1 (Toruriczyk [6]). A complete separable nowhere locally compact ANR X is an £2-manifold if and only if X satisfies
the SDAP.

Recall that amap f: X — Y is called soft [7] if for every commutative diagram

—ox (1)

A
I
z

— Y

such that A is a closed subset of a paracompact space Z, there exists amap @ : Z — X such that f@ = ¢ and ®|A = ¢.

A trivial £?-bundle is a map f: X — Y which is homeomorphic to the projection Y x M — Y onto the first factor,
where M is ¢2. Amap f: X — Y of metric spaces is said to satisfy the fiberwise discrete approximation property if for
everymap g: ]_[ﬁil I" — X and every continuous function ¢: X — (0, co) there is a map h: ]_[ii] I" — X such that

d(f (x), g(x) < £(x), x € [[;2,I", and:

(1) fg = fh; and
(2) the family {h(I") | i € N} is discrete.

The following result was cited in [8] and was attributed to Toruriczyk and West (see [9] for the compact case).

Theorem 2.2 (Toruriczyk-West Characterization Theorem for R®-Manifold Bundles). Amap f : X — Y of complete metric ANR-
spaces is a trivial R if f is soft and f satisfies the fiberwise discrete approximation property (FDAP).

The following notion was introduced in [10]: a c-structure on a topological space X is an assignment, to every nonempty
finite subset A of X, of a contractible subspace F(A) of X, such that F(A) C F(A’) whenever A C A. A pair (X, F), where F is a
c-structure on X, is called a c-space. A subset E of X is called an F-set if F(A) C E for any finite A C E. A metric space (X, d)
is said to be a metric l.c.-space if all the open balls are F-sets and all open r-neighborhoods of F-sets are also F-sets.

The following is a generalization of the Michael Selection Theorem for generalized convexity structures (see [11] for the
proof). Recall that a multivalued map F: X — Y of topological spaces is called lower semicontinuous if, for any open subset
UofY,theset{x € X | F(x) N U # @} is open in X. A selection of a multivalued map F: X — Y is a (single-valued) map
f: X — Y such that f(x) € F(x) for every x € X. The following was proved in [11] (see the second corollary of Theorem 2
in[11]).

Theorem 2.3. Let (X, d, F) be a metric l.c.-space. Then X is an AR.

Theorem 2.4. Let (X, d, F) be a complete metric l.c.-space. Then any lower semicontinuous multivalued map T: Y — X of a
paracompact space Y whose values are nonempty closed F-sets has a continuous selection.
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3. Two lemmas

Recall that the countable power R of the real line R is homeomorphic to the pseudo-interior s of the Hilbert cube Q as
well as, by the Anderson-Kadec theorem, to the separable Hilbert space £2. We shall consider the following metric o on R:
o(x,y) = min{|x — y|, 1}.

We shall define a metric d on the countable power R® by the formula

S, G),) = max L0

ieN 21

Note that d is a complete metric generating the Tychonov topology on R®.

Lemma 3.1. The space mpcc(R®) is an absolute retract.

Proof. Define a c-structure on mpcc(R®) as follows: given any Ay, ..., A, € mpcc(R®), let
n
F({A1, ..., A}) = {@a,— QA |, ... oy € [00,0], L =07,
i=1

We are going to show that every set of the form F({A1, ..., Aq}) is contractible. LetA = @} ; Ai. ThenA € F({A;, ..., An}).
Define a map

H: F({Aq,...,Ay}) x [0,1] = F({A1, ..., A}
by the formula
H(C,t) =C® (Int) © A.

Note that H is well-defined, H(C,0) = C @ {—oo} = Cand H(C,1) =C&® 0O A = A, forevery C € F({A1, ..., Ap}). Thus,
H contracts the set F({Aq, ..., Ay}) to A.

Now let us prove that every neighborhood of a point in mpcc(R®) is an F-set. Let A € mpcc(R’),r > 0, and
dy(A, B),dy(A,B) < r.Givena € A findb € Band b’ € B such that d(a,b) < r and d(a, b’) < r. Without loss of
generality, we may assume that a = 0. There exist i, j € N such that

min{|b;|, 1 min{|bi|, 1}
da, by = MO gy = RO
2! 2
Givent € [—o0, 0], find k € N such that

min{| max{by. bj, + t}I. 1)
2k '
Without loss of generality, we may assume that r < 1. The rest of the proof splits into two cases.
Case 1. by > b, + t. Then

dia,b®toOb) =

b b;
bl _ Il _

dia,b®toOb) = -
@b@tob) = ¢ < =

Case 2. by < b, + t. Then also b, +t < b;, and

, by + ¢ |bi| bl b |bj]
da,b@®toOb) = S SMax) e, S p S maxgon e <

In both cases, for every a € A there is a pointc € B@® t ® B’ such that d(a, ¢) < r. Similarly, foranyc € B&@t - B
one can find a € A such that d(a, c) < r. This shows that dy(A,B@® t © B") < r for every B, B € mpcc(R®) such that
dH (A, B) <Tr, dH (A, B/) <T.

We can demonstrate by induction that

n
dy (@ai @A,»,A) <r, wheneveray,...,a, € [—00,0],

i=1
@, =0, and dy(A,A) <r, foreveryi=1,...,n.
This shows that every r-neighborhood of a point in the space mpcc(R®) is an F-set.

By using a similar argument we can prove that every neighborhood of an F-set is again an F-set. It follows from the results
of [11] that the space mpcc(R®) is an AR-space (see Theorem 2.3). O
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Let A, B be nonempty sets such that A C B. Observe that the projection p = pf\' : RB — R4 onto the first factor induces
the map
mpce(p) : mpec(RE) — mpec(R?)
given by:
mpcc(p)(A) = p(A), A € mpcc(R?).

It is easy to verify that this map is well-defined.
We may regard the construction mpcc as a covariant functor acting on the category whose objects are the powers of R
and where the morphisms are the projections.

Lemma 3.2. Let p: R® x R® — R be the projection onto the first factor. Then the map mpcc(p) is soft.

Proof. Consider a commutative diagram

A — ¢ mpcc(R® x R?) (2)

\L mpcc(p)

Z —¢/> mpcc(R®),
where A is a closed subset of a paracompact space Z.
For every C € mpcc(R®), the preimage
mpce(p)~!(c) C mpec(R® x R?)

is convex with respect to the c-structure F in the space mpcc(R” x R®) defined as follows: given any A4, ..., A, €
mpcc(R” x R?), let

n
F({A1, ..., Ap)) = {@m@f\i |y, ..., 0n € [—00,0], B, =0¢.
i=1

Note that this is an F-structure with respect to the Hausdorff metric dj, on the space mpcc(R® x R”) generated by the metric
d’ on the space R” x R® defined by the formula

d'((x1,¥1), (X2, ¥2)) = max{d(x;, x2), d(y1, y2)}.

This can be established by repeating the corresponding arguments from the proof of Lemma 3.1.
Define a multivalued map @ : Z — mpcc(R® x R®) as follows:

_ [mpcc@) T (W (@), ifzeZ\A,
‘p(z)_{{w(z)}, ifz € A.

Clearly, the images of @ are F-sets. Since the set A is closed, we see that the map @ is lower semicontinuous. It follows from
Theorem 2.4 that this map admits a continuous selection g. Clearly, g|A = ¢ and gmpcc(p) = . This proves the softness
of mpcc(p). O

4. The main result

Theorem 4.1. The hyperspace mpcc(R®) of compact max-plus convex subsets in the space R” is homeomorphic to R”.

Proof. Since R” is homeomorphic to (R”)“, one can represent the latter space as the limit of the inverse sequence
R?” <« R?” XR? <~ R X R? X R” < .-+,

where every arrow denotes the projection onto the first factor. Applying the functor mpcc to this sequence we obtain
mpcc(R?) < mpcc(R® x R”) < mpcc(R” x RY x R”) <« --- . (3)

The bonding maps of the latter sequence have the following property: for every such map there exists a countable family of
selections such that the family of images of these selections is discrete. Indeed, let C = {¢; | i € w} be a closed countable
subset of R“. For every i € w, denote by s; the selection of the map

mpcc((R” x R x - -+ x R’) x R?) — mpcc(R” x R x --- x R?)
defined as follows: s;(A) = A x {c}.
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We are going to show that the limit projection of the inverse limit of (3) onto mpcc(R®) satisfies the FDAP. Let
f Uien Qi — mpcc((R®)“) be a map and let £ : mpcc((R”)®) — (0, oo) be a function. For every n € w, let

1
Yn={y€Y|8(f(V))22n}-
Note that
Yo C Int(Y1) cY| C ]l‘lt(YZ) CYy-o-.
Define, forevery [ =0, 2,4, ...,amapg: Y1 UY;UY; — mpcc((R®)?) by the formula

&) = mpee(pr DY) x {a} x {ci} x---,

whenever y € Q;. Now, forevery !l = 1,3,5,..., let ¢;: Y)_1 U Y, UY; — [0, 1] be a function such that ¢;|Y;_; =
0, ¢ilYir1 = 0.

Define a map g: Uijey Qi — mpcc((R?)®) by the following condition. Let y € Y;, wherel = 0, 2, 4, . ... Then define
gy) =g@).fy e Y,NQ;,wherel =1, 3,5, ..., then define

g(,y) = {((115 coesa (pl(y)al+1 + (1 - (pl(_y))ch Ci, G, .. ‘) | (ak)](:i] € f(,y)}'

It is easy to see that the map g is well-defined, mpcc(pr;)f = mpcc(pr;)g, and that d(f(x), g(x)) < e(x), for every
X € Uien Qi.

We are going to prove that the map g is a closed embedding. Suppose the contrary. Then there exists a sequence
()2, where yi, € Qy, for every i (here we assume that k; < k» < k3 < ---), such that lim;_o, g(¥x,) = A, for some
A € mpcc((R®)“). Without loss of generality, one may assume that k; = i, for all i.

Since £(A) > 0, one may assume thate(g(y;)) > 27" forsomen < w.Denote by i : (R®)® — R the projection onto the
kth factor. Then from the construction of the map g it follows that mpcc(m,+1)(g(¥;)) = {ci}. Since the set C = {¢; | i € w}
is closed in R”, we obtain a contradiction.

It now follows from Theorem 2.2 that the limit projection of the inverse limit of the inverse sequence (3) onto mpcc(R®)
is a trivial £2-bundle. Since the space mpcc(R®) is an absolute retract, we conclude that

mpcc(R?) ~ mpcc((R)?) ~ mpcec(R®) x £2 ~ ¢2,

which proves the theorem. O

Remark 4.2. As a by-product of the proof we see that the map mpcc(p;) : mpcc(R” xR®) — mpcc(R®) is a trivial £2-bundle
(here p; denotes the projection onto the first factor).

The following result is an analogue of a theorem of the first-named author [12], proved for the open sets in R", n > 2.
Theorem 4.3. Let X be an open subset in the space R“. Then the hyperspace of max-plus convex subsets in X is homeomorphic
to X.

Proof. The set X is an R”-manifold, being an open subset of mpcc(R®). We identify the set X with the set of all singletons
in X. The map max: mpcc(X) — X is therefore a retraction. Denote the homotopy H: mpcc(X) x [0, 1] — mpcc(X) by the
formula

HA,t) ={a® IntmaxA|a €A}, Ae€mpcc(X), tel0,1]

(convention: In0 = —o0).

Therefore, the space X is a deformation retract of the space mpcc(X), whence we conclude that the spaces X and mpcc(X)
are homotopically equivalent. The classification theorem for R“-manifolds implies that the spaces X and mpcc(X) are
homeomorphic. O
Theorem 4.4. The hyperspace mpcc(R®?) is homeomorphic to R”1.

Proof. We represent R“! as the limit of the inverse system 8 = {(R®)%, pyg; w1}, where, fora > B, the map pog: (R*)* —
(R®)# is the projection map. Then, recall that every projection map Pap induces the map mpcc(pqg) : mpcc((R®)*) —
mpcc((R?)?) and therefore we obtain the inverse system

mpcc(4) = {mpcc((R”)%), mpec(pap); w1}

Since by Remark 4.2 every bonding map mpcc(peg) is homeomorphic to the projection p: R” x R® — R®, we conclude
that

mpcc(R1) = mpcc(l(iﬂ(&) = l(iﬂ](mpcc(g)) ~ R

(the second equality is simply the continuity of the functor mpcc; see [13] for details.) O
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In the sequel, we shall speak of the theory of noncompact nonmetrizable absolute extensors in the sense of [8]. They are
defined as retracts of functionally open subspaces of powers of the real line. Recall that a set U in a topological space X is
called functionally open if U = f~'((0, 1]) for some continuous function f : X — [0, 1].

Theorem 4.5. Let M be a functionally open subset of R®1. Then mpcc(M) is homeomorphic to M.

Proof. Note that the set mpcc M is also functionally open. Indeed, let f : R“1 — [0, 1] be a continuous function such that
M = f~1((0, 1]). Define the function f : R*! — [0, 1] by the formula f(A) = infA. Then, clearly, f ~((0, 1]) = mpcc M.

There exists a countable subset S C w; and a function g: RS — [0, 1] such that f = gpr;. Therefore, M = U x R*1"S,
Without loss of generality, one may conclude that S = w C w;. We conclude that

M = lim{U xRa\“’,pftg;a) <a<fB<w)

and therefore
B\w

a\w

mpcc(M) = l(ir_n{mpcc(U x R\, mpee(ph\ ) w < o < B < w1}

Since by Theorem 4.3, the space mpcc(U) is homeomorphic to U and every projection map in the latter inverse system
is soft, we conclude that

mpcc(M) >~ mpcc(U) Xx R ~ U x R ¥ M. O

Theorem 4.6. The hyperspace mpcc(R") is not an absolute retract, for any T > w;.

Proof. First, note that it suffices to consider the case T = w,. Now, recall that mpcc is a functor acting on the category whose
objects are spaces R* and the morphisms are the projections. Assuming that mpcc(R“2) is an absolute retract we conclude,
by Chigogidze’s characterization theorem [14], that mpcc(R“2) is homeomorphic to R*2.

By general results concerning the functors in the category of Tychonov spaces [8,7], we obtain that any homeomorphism
of R”2 and mpcc(R*2) implies the isomorphism of the square diagram

D= R R

pris i l pry

(Rw ) 2 o > R®

where pry;, pr; denote the projections onto the corresponding factors, and mpcc(D).
We are going to show that the diagram mpcc(&D) is not a pullback diagram. Let

A={0}CR?, B=C={0}x{(x)|x €[0,1], x; =0, ifi > 0} C (R®)%.
Let also

Dy = {0} x {((x), ) | Xo =yoandx; = y; = 0, ifi > 0} C (R*)*;
then

mpce(pry,) (D) = mpee(pry,)(D1) = B, mpce(pry3)(D) = mpee(pry3)(Dq) = C.

Thus mpcc(D) is not a pullback diagram and this completes the proof. O
5. Epilogue
The following question is related to Theorem 4.3.

Question 5.1. Let U be an open subset of R“! which is an R“1-manifold (see [14] for the background of the theory of R*1-
manifolds). Is mpcc(U) then homeomorphic to U?

The following notion was introduced in [15] and investigated in [16,17]. A subset B of R/} is said to be B-convex if for all
X,y € Bandallt € [0, 1] one has max(tx, y) € B. For the hyperspace B -cc(R"), n > 2, of compact B-convex subsets of R,
one can prove analogues of the results in [13].

One can extend this notion over an arbitrary vector lattice. Let Ei denote the positive cone of the separable Hilbert space
£2. We say that a subset B of Zi is B-convex if for all x,y € Band all t € [0, 1] one has max(tx, y) € B. We conjecture that
the hyperspace of compact B-convex subsets in lii is homeomorphic to £2. An analogous question can be formulated for the
nonseparable case.

Question 5.2. Let ¢?(A),. denote the positive cone in a nonseparable Hilbert space £2(A). Is the hyperspace B -cc(¢?(A)4.)
homeomorphic to £2(A)?
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