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ABSTRACT

In this paper,we study the existence and thenonexistence of solutions
for a new class of p(x)-curl systems arising in electromagnetism. This
work generalizes some results obtained in the p−curl case. There
seems to be no results on the nonexistence of solutions for curl
systems with variable exponent.
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1. Introduction

The study of PDE’s involving variable exponents has become very attractive in recent

decades since differential operators involving variable exponent growth conditions can

serve in describing nonhomogeneous phenomena which can occur in different branches

of science, e.g.: electrorheological fluids and nonlinear Darcy’s law in porous media, see

[1,2].

The literature on equations with p(x)-Laplacian or p−curl operators is quite large, see

e.g. [3–17] and the references therein. To the best of our knowledge, the only results

involving the p(x)-curl operators can be found in [18,19]. In [18], the authors introduced a

suitable variable exponent Sobolev space and obtained the existence of local or global weak

solutions for equation with p(x, t)−curl operator by using Galerkin’s method. In [19], the

authors used for the first time the variational methods for equations involving p(x)-curl

operator.

In this paper, our aim is to study equations in which a variable exponent curl operator

is present. More precisely, we study the existence and nonexistence of solutions. To the

best of the authors knowledge, this is one of the first works devoted to the studies of the

nonexistence of solutions in variable exponent curl operator.

Let � be a bounded simply connected domain of R
3 with a C1,1 boundary denoted

by ∂�. To introduce our problem more precisely, we first give some notations. Let u =
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COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 293

(u1, u2, u3) be a vector function on�. The divergence of u is denoted by

∇.u = ∂x1u1 + ∂x2u2 + ∂x3u3

and the curl of u is defined by

∇ × u = (∂x2u3 − ∂x3u2, ∂x3u1 − ∂x1u3, ∂x1u2 − ∂x2u1).

We consider the following p(x)-curl systems:

{

∇ × (|∇ × u|p(x)−2∇ × u) = λg(x, u)− µf (x, u), ∇.u = 0 in �,

|∇ × u|p(x)−2∇ × u× n = 0, u.n = 0 on ∂�,
(1.1)

where λ,µ > 0, p ∈ C(�) with 6
5 < p− = minx∈� p(x) ≤ p+ = maxx∈� p(x) < 3 and

there exists w : R+0 → R
+
0 such that

∀x, y ∈ �, |x−y| < 1, |p(x)−p(y)| ≤ w(|x−y|), and lim
s→0+

w(s)log

(

1

s

)

= C <∞ (P).

Throughout this paper, we shall always make the following assumptions:

(F1) F : � × R
3 → R is differentiable with respect to u ∈ R

3 and f = ∂uF(x, u) :

�× R
3 → R

3 is a Carathéodory function.

(F2) There exist α,β > 0 and q ∈ C(�) such that p+ < q(x) < p∗(x) =
3p(x)
3−p(x) in �

and

F(x, u) ≥ α|u|q(x) and |f (x, u)| ≤ β(1+ |u|q(x)−1), ∀(x, u) ∈ �× R
3.

(G1) There exist a nonnegative function g ∈ L∞(�) and r ∈ C(�) such that

p+ < r− ≤ r(x) < q− and G(x, u) = g(x)|u|r(x),

for all (x, u) ∈ �× R
3.

(G2) G : � × R
3 → R is differentiable with respect to u ∈ R

3 and g = ∂uG(x, u) :

�× R
3 → R

3 is a Carathéodory function.

(G3) There exist γ ,µ > 0, L > 1 and k, r ∈ C(�) such that 1 < k < p− and

1 < r(x) < p∗(x),

|g(x, u)| ≤ µ(1+ |u|r(x)−1), ∀(x, u) ∈ �× R
3,

lim sup
u→0

G(x, u)

|u|p
+
= 0 uniformly in x ∈ �

and

sup
u∈E

∫

�

G(x, u)dx > 0, |G(x, u)| ≤ γ |u|k(x), ∀x ∈ R
3, ∀|u| > L.

Our main results are the following two theorems.

Theorem 1.1: Assume that hypotheses (F1)− (F2) and (G1)− (G2) hold. Then:
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294 A. BAHROUNI AND D. REPOVŠ

(i) There exist λ1,µ1 > 0 such that, if 0 < λ < λ1 and µ > µ1, then problem (1.1) does

not have any nontrivial weak solution.

(ii) For each µ > 0, there exists λµ > 0 such that if λ > λµ, then problem (1.1) has at

least one nontrivial weak solution.

Theorem 1.2: Assume that (F1)−(F2) and (G2)−(G3) hold. Then there exist λ2, λ3, r > 0

such that, ifλ ∈ [λ2, λ3], there existsµ2 > 0with the following property: for eachµ ∈ [0,µ2],

equation (1.1) has at least three solutions whose norms are less than r.

We have divided this paper into 3 sections. In Section 2, we give some notations and we

recall some necessary definitions. In Section 3, we prove our main results.

2. Function spaces with variable exponent and preliminary results

In this section we recall some basic definitions and properties concerning the basic

function spaces with variable exponent and the space Wp(x)(�) of divergence free vector

functions belonging to Lp(x)(�) with curl in Lp(x)(�). We refer to [7–9,13,16,18,19] and

the references therein.

Consider the set

C+(�) = {p ∈ C(�), p(x) > 1 for all x ∈ �}.

For any p ∈ C+(�) define

p+ = sup
x∈�

p(x) and p− = inf
x∈�

p(x),

and the variable exponent Lebesgue space

Lp(x)(�) =

{

u; u is measurable real-valued function such that

∫

�

|u(x)|p(x) dx <∞

}

.

This vector space is a Banach space if it is endowed with the Luxemburg norm, which is

defined by

|u|p(x) = inf

{

µ > 0;

∫

�

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

.

The function space Lp(x)(�) is reflexive if and only if 1 < p− ≤ p+ < ∞ and continuous

functions with compact support are dense in Lp(x)(�) if p+ <∞.

Let Lq(x)(�) denote the conjugate space of Lp(x)(�), where 1/p(x) + 1/q(x) = 1. If

u ∈ Lp(x)(�) and v ∈ Lq(x)(�) then the following Hölder-type inequality holds:

∣

∣

∣

∣

∫

�

uv dx

∣

∣

∣

∣

≤

(

1

p−
+

1

q−

)

|u|p(x)|v|q(x) . (2.1)

Moreover, if pj ∈ C+(�) (j = 1, 2, 3) and

1

p1(x)
+

1

p2(x)
+

1

p3(x)
= 1
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COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 295

then for all u ∈ Lp1(x)(�), v ∈ Lp2(x)(�), w ∈ Lp3(x)(�)

∣

∣

∣

∣

∫

�

uvw dx

∣

∣

∣

∣

≤

(

1

p−1
+

1

p−2
+

1

p−3

)

|u|p1(x)|v|p2(x)|w|p3(x) . (2.2)

The inclusion between Lebesgue spaces also generalizes the classical framework, namely

if 0 < |�| <∞ and p1, p2 are variable exponents so that p1 ≤ p2 in�, then there exists the

continuous embedding Lp2(x)(�) →֒ Lp1(x)(�).

Proposition 2.1: If we denote

ρ(u) =

∫

�

|u|p(x)dx, ∀u ∈ Lp(x)(�),

then

(i) |u|p(x) < 1(resp. = 1;> 1)⇔ ρ(u) < 1(resp. = 1;> 1);

(ii) |u|p(x) > 1⇒ |u|
p−

p(x) ≤ ρ(u) ≤ |u|
p+

p(x); and

(iii) |u|p(x) < 1⇒ |u|
p+

p(x) ≤ ρ(u) ≤ |u|
p−

p(x).

Proposition 2.2: If u, un ∈ Lp(x)(�) and n ∈ N, then the following statements are

equivalent:

(1) lim
n→+∞

|un − u|p(x) = 0.

(2) lim
n→+∞

ρ(un − u) = 0.

(3) un → u in measure in� and lim
n→+∞

ρ(un) = ρ(u).

If k is a positive integer and p ∈ C+(�), we define the variable exponent Sobolev space

by

Wk,p(x)(�) = {u ∈ Lp(x)(�) : Dαu ∈ Lp(x)(�), for all |α| ≤ k}.

Here α = (α1, . . . ,αN ) is a multi-index, |α| =
∑N

i=1 αi and

Dαu =
∂ |α|u

∂
α1
x1 . . . ∂

αN
xN

.

On Wk,p(x)(�) we consider the following norm

‖u‖k,p(x) =
∑

|α|≤k

|Dαu|p(x).

Then Wk,p(x)(�) is a reflexive and separable Banach space. Let W
k,p(x)
0 (�) denote the

closure of C∞0 (�) in Wk,p(x)(�).

Theorem 2.3: Let q ∈ C(�) such that 1 ≤ q(x) <
3p(x)
3−p(x) in �. Then the embedding

W1,p(x)(�) →֒ Lq(x)(�) is compact.

Let Lp(x)(�) = Lp(x)(�)× Lp(x)(�)× Lp(x)(�) and define

E =Wp(x)(�) = {v ∈ Lp(x)(�) : ∇ × v ∈ Lp(x)(�),∇.v = 0, v.n|∂� = 0},
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296 A. BAHROUNI AND D. REPOVŠ

where n denotes the outward unit normal vector to ∂�. EquipWp(x)(�)with the following

norm

‖v‖ = ‖v‖Lp(x)(�) + ‖∇ × v‖Lp(x)(�).

If p− > 1, then by Theorem 2.1 of [18], E =Wp(x)(�) is a closed subspace of W
1,p(x)
n (�),

where

W
1,p(x)
n (�) = {v ∈W1,p(x)(�), v.n|∂� = 0}

and

W1,p(x)(�) =W1,p(x)(�)×W1,p(x)(�)×W1,p(x)(�).

Thus we have the following theorem.

Theorem 2.4: Assume that 1 < p− ≤ p+ < ∞ and p satisfies (P). Then Wp(x)(�) is a

closed subspace of W
1,p(x)
n (�). Moreover, if p− > 6

5 , then ‖∇ × .‖ is a norm in Wp(x)(�)

and there exists C = C(N , p−, p+) > 0 such that

‖v‖W1,p(x)(�) ≤ C‖∇ × v‖Lp(x)(�).

Corollary 2.5: By Theorems 2.3 and 2.4, the embedding Wp(x)(�) →֒ Lq(x)(�) is com-

pact, with 1 < p− ≤ p+ < 3, q ∈ C(�) and 1 ≤ q(x) <
3p(x)
3−p(x) in �. Moreover,

(Wp(x)(�), ‖.‖) is a uniformly convex and reflexive Banach space.

Define for any λ,µ > 0 and u ∈ E ,

φ(u) =

∫

�

|∇ × u|p(x)dx, J(u) =

∫

�

G(x, u)dx

ψ(u) =

∫

�

−F(x, u)dx and I(u) = φ(u)− λJ(u)− µψ(u).

It is easy to see, under assumptions (P), (F1) − (F2) and (G1) − (G3), that I ,φ, J ,ψ ∈

C1(E,R).

Definition 2.6: For every λ,µ > 0, we say that u ∈ E is a weak solution of problem (1.1),

if
∫

�

|∇×u|p(x)−2∇×u.∇×vdx−λ

∫

�

g(x, u(x)).vdx+µ

∫

�

f (x, u(x)).vdx = 0, ∀v ∈ E.

For more details, we refer the reader to [19].

3. Proofs of main results

3.1. Proof of Theorem 1.1

Lemma 3.1: Suppose that the assumptions (F1)− (F2) and (G1)− (G2) are fulfilled. Then

there exist positive constants λ1,µ1 such that, for every 0 < λ < λ1 and µ1 < µ, problem

(1.1) does not have any nontrivial weak solutions.

Proof: Assume that u is a nontrivial weak solution of equation (1.1).
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COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 297

Case 1: We suppose that ‖u‖ < 1. Then, by Proposition 2.1, u satisfies the following

inequality

‖u‖p
+

≤

∫

�

|∇ × u|p(x)dx = λ

∫

�

G(x, u)dx − µ

∫

�

F(x, u)dx. (3.1)

Now, since r(x) < q(x) in�, applying the Young inequality we can deduce that

λ

∫

�

g(x)|u|r(x)dx ≤
q+ − r−

q−

∫

�

|λg |
q(x)

q(x)−r(x) dx +
r+

q−

∫

�

|u|q(x)dx. (3.2)

Invoking inequalities (3.1) and (3.2), and conditions (F1) − (F2) and (G1), for λ small

enough, we obtain

0 < ‖u‖p
+

≤
(q+ − r−)λ

q−

q+−r−

q−

∫

�

|g |
q(x)

q(x)−r(x) dx + (
r+

q−
− µα)

∫

�

|u|q(x)dx

≤
(q+ − r−)λ

q−

q+−r−

q−

∫

�

|g |
q(x)

q(x)−r(x) dx = λ
q−

q+−r− A <∞, (3.3)

where A =
q+−r−

q−

∫

�

|g |
q(x)

q(x)−r(x) dx and µ > µ1 =
r+

αq−
.

Thanks to Corollary 2.5, there exists a constant β > 0 such that

β|u|
p+

r(x) ≤ ‖u‖
p+ , ∀u ∈ E. (3.4)

Thus, in view of (3.1), (3.4), and Proposition 2.1, we get

β|u|
p+

r(x) ≤ λ‖g‖∞max (|u|r
−

r(x), |u|
r+

r(x)). (3.5)

Having in mind p+ < r− < r+ and ‖u‖r(x) > 0, by (3.3) and (3.5), we have

βmax





(

β

λ‖g‖∞

)

p+

r−−p+

,

(

β

λ‖g‖∞

)

p+

r+−p+



 ≤ ‖u‖p
+

≤ λ
q−

q+−r− A. (3.6)

Case 2: We suppose that ‖u‖ > 1. It suffices to replace p+ by p− in the proof of Case 1.

This concludes the proof.

Lemma 3.2: Assume that assumptions (F1)− (F2) and (G1)− (G2) hold. Then

(a) I is a coercive functional; and

(b) I is a weakly lower semicontinuous functional.

Proof:

(a) Let λ,µ > 0 and u ∈ E with ‖u‖ > 1. Combining Proposition 2.1, Young inequality,

and assumptions (F2) and (G1), one obtains the following inequalities
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298 A. BAHROUNI AND D. REPOVŠ

I(u) ≥
1

p+
‖u‖p

−

+ αµ

∫

�

|u(x)|q(x)dx − λ

∫

�

g(x)|u|r(x)dx

≥
1

p+
‖u‖p

−

+
µα

2

∫

�

|u(x)|q(x)dx − cλ,µ,α

∫

�

|g(x)|
q(x)

q(x)−r(x) dx,

where cλ,µ,α is a positive constant. This demonstrates the coercivity of the functional

I .

(b) Let (un) be a sequence such that un⇀u in E. Using the fact that (un) is bounded in

E, Corollary 2.5 and Proposition 2.2, up to a subsequence, still denoted by (un), we

can infer that

un → u a.e in � and lim
n→+∞

∫

�

g(x)|un|
r(x)dx =

∫

�

g(x)|u|r(x)dx. (3.7)

By the weak lower semicontinuity of the norm ‖.‖, we have

‖u‖ ≤ lim inf
n→+∞

‖un‖. (3.8)

Furthermore, Fatou’s lemma and (F2) yield the following inequality

∫

�

lim inf
n→+∞

F(x, un)dx ≤ lim inf
n→+∞

∫

�

F(x, un)dx. (3.9)

Combining (3.7)–(3.9), we have thus proved the claim.

Completion of the proof of Theorem 1.1:

(i) Evidently, by Lemma 3.1, assertion (i) of Theorem 1.1 holds.

(ii) Fix µ > 0. Using Lemma 3.2, for every λ > 0, we can find u ∈ E such that

I(u) = inf
v∈E

I(v).

Hence, for every λ > 0 and µ > 0, u is a weak solution of problem (1.1). It remains

to show that u is nontrivial weak solution of system (1.1). Invoking assumption

(G1), we can find w ∈ E such that

∫

�

G(x,w)dx = 1.

It follows that

I(w) =

∫

�

|∇ × w|p(x)

p(x)
dx + µ

∫

�

F(x,w)dx − λ = λµ − λ,

where λµ =

∫

�

|∇ × w|p(x)

p(x)
dx + µ

∫

�

F(x,w)dx. Thus, I(w) < 0 for any λ > λµ.

This completes the proof.
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COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 299

3.2. Proof of Theorem 1.2

Themain tool in the proof of Theorem 1.2 is the variant of the three critical points theorem

established by Ricceri [20]. Before stating his theorem, we need the following definition.

Definition 3.3: If X is a real Banach space, we denote by RX the class of all functional

φ : X → R possessing the following property: If (un) is a sequence in X, converging

weakly to u ∈ X, and lim infn→+∞ φ(un) ≤ φ(u), then (un) has a subsequence strongly

converging to u.

Theorem 3.4: Let X be a separable and reflexive real Banach space, φ : X → R a

coercive, sequentially weakly lower semicontinuous C1 functional belonging to RX , bounded

on each bounded subset of X and with the derivative admitting a continuous inverse on

X∗; J : X → R, a C1 functional with compact derivative. Assume that φ has a strict local

minimum x0 with φ(x0) = J(x0) = 0. Finally, setting

α = max

{

0, lim sup
‖x‖→+∞

J(x)

φ(x)
, lim
‖x‖→x0

J(x)

φ(x)

}

and

β = sup
x∈φ−1(0,+∞)

J(x)

φ(x)
,

assume that α < β. Then for each compact interval [a, b] ⊂ ( 1
β
, 1
α
) (with the conventions

1
0 = +∞, 1

∞
= 0), there exists r > 0 with the following property: for every λ ∈ [a, b] and

every C1 functional ψ : X → R with compact derivative, there exists δ > 0 such that for

each µ ∈ [0, δ], the equation

φ
′

(x) = λJ
′

(x)+ µψ
′

(x)

has at least three solutions whose norm is less than r.

Completion of the proof of Theorem 1.2:

Standard arguments can be used to show that J
′
and ψ

′
are compact, while φ is a

coercive, sequentially weakly lower semicontinuous and φ
′
is a homeomorphism between

E and its dual. Clearly, φ ∈ RE , since E is uniformly convex.

Fix ǫ, s > 0 such that p+ + s < p∗(x). By virtue of assumption (G3), there exists a

constant η with 0 < η < L, such that

G(x, u) ≤ ǫ|u|p
+

, ∀x ∈ �, ∀|u| ∈ [−η, η].

Again, by assumption (G3), it follows that

J(u) ≤

∫

{x∈�,|u(x)|≤η}
G(x, u)dx +

∫

{x∈�,η≤|u(x)|≤L}
G(x, u)dx +

∫

{x∈�,|u(x)|≥L}
G(x, u)dx

≤ c

(

ǫ

∫

{x∈�,|u(x)|≤η}
|u|p

+

dx +

∫

{x∈�,η≤|u(x)|≤L}
|u|p

++sdx + γ

∫

{x∈�,|u(x)|≥L}
|u|k(x)dx

)

≤ c

(

ǫ

∫

{x∈�,|u(x)|≤η}
|u|p

+

dx +

∫

{x∈�,η≤|u(x)|≤L}
|u|p

++sdx +

∫

{x∈�,|u(x)|≥L}
|u|p

++sdx

)

≤ c
(

ǫ‖u‖p
+

+ ‖u‖p
++s

)

,
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for some positive constant c. This, along with Proposition 2.1, yields, for ‖u‖ < 1

J(u)

φ(u)
≤ c

ǫ‖u‖p
+
+ ‖u‖p

++s

‖u‖p
+

,

hence,

lim sup
u→0

J(u)

φ(u)
≤ cǫ. (3.10)

Taking u ∈ E with ‖u‖ > 1, from (G2)− (G3), we get

J(u) ≤

∫

{x∈�,|u(x)|≤L}
G(x, u)dx +

∫

{x∈�,|u(x)|≥L}
G(x, u)dx

≤ c +

∫

{x∈�,|u(x)|≥L}
|u|k(x)dx

≤ c(1+ ‖u‖k
−

+ ‖u‖k
+

).

This implies that

lim sup
u→+∞

J(u)

φ(u)
≤ lim sup

u→+∞

c(1+ ‖u‖k
−
+ ‖u‖k

+
)

‖u‖p
−

= 0 (3.11)

Therefore, by (3.10) and (3.11), α = 0. In view of assumption (G3), we have β > 0. Thus

all hypotheses of Theorem 3.4 are satisfied. The proof is therefore complete.
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[16] Rădulescu VD, Repovš DD. Partial differential equations with variable exponents: variational

methods and qualitative analysis. Boca Raton (FL): CRC Press; 2015.
[17] RepovšDD. Stationarywaves of Schrödinger-type equationswith variable exponent. AnalAppl

(Singap). 2015;13:645–661.
[18] Antontsev S, Mirandac F, Santos L. Blow-up and finite time extinction for p(x, t)-curl systems

arising in electromagnetism. J Math Anal Appl. 2016;440:300–322.
[19] Xiang M, Wang F, Zhang B. Existence and multiplicity for p(x)−curl systems arising in

electromagnetism. J Math Anal Appl. 2017;15:1600–1617.
[20] Ricceri B. A further three critical points theorem. Nonlinear Anal. 2009;71:4151–4157.

D
o

w
n

lo
ad

ed
 b

y
 [

fa
cu

lt
ie

s 
o

f 
th

e 
U

n
iv

er
si

ty
 o

f 
L

ju
b

lj
an

a]
 a

t 
2

2
:4

8
 2

8
 N

o
v

em
b

er
 2

0
1

7
 


