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Abstract
In this paper we are concerned with a class of double phase energy functionals 
arising in the theory of transonic flows. Their main feature is that the associated 
Euler equation  is driven by the Baouendi–Grushin operator with variable 
coefficient. This partial differential equation is of mixed type and possesses 
both elliptic and hyperbolic regions. After establishing a weighted inequality 
for the Baouendi–Grushin operator and a related compactness property, we 
establish the existence of stationary waves under arbitrary perturbations of 
the reaction.
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1.  Unbalanced problems and double phase variational integrals

The present paper was motivated by recent fundamental progress in the mathematical analysis of 
nonlinear models with unbalanced growth. We point out the early works of Marcellini [23, 24] 
who was interested in qualitative properties, such as lower semicontinuity and regularity of mini-
mizers in the abstract setting of quasiconvex integrals. Related problems were inspired by models 
arising in nonlinear elasticity and they describe the deformation of an elastic body, see Ball [4, 5].

We recall some basic facts concerning double phase problems. Let Ω ⊂ RN (N � 2) be a 
bounded domain with smooth boundary. Let u : Ω → RN  denote the displacement and assume 
that Du is the N × N  matrix associated to the deformation gradient. It follows that the total 
energy is described by an integral of the following type

I(u) =
∫

Ω

f (x, Du(x))dx.� (1.1)

Here, the potential f = f (x, ξ) : Ω× RN×N → R is assumed to be a quasiconvex function 
with respect to the second variable; we refer to Morrey [29] for details.

Ball [4, 5] was interested in potentials given by

f (ξ) = g(ξ) + h(det ξ),

where det ξ  denotes the determinant of the N × N  matrix ξ. It is also assumed that g and h are 
nonnegative convex functions satisfying the growth hypotheses

g(ξ) � c1 |ξ| p and lim
t→+∞

h(t) = +∞,

where c1  >  0 and 1 < p � N . We point out that the assumption p � N  was necessary in order 
to study the existence of cavities for equilibrium solutions, that is, minima of the energy 
functional (1.1) which are discontinuous at one point where a cavity appears. In fact, every 
function u with finite energy belongs to the function space W1,p(Ω,RN), hence it is continu-
ous if p   >  N. Accordingly, Marcellini [23, 24] considered functions f = f (x, ξ) with different 
growth near the origin and at infinity (unbalanced growth), which satisfy the hypothesis

c1 |ξ| p � |f (x, ξ)| � c2 (1 + |ξ|q) for all (x, ξ) ∈ Ω× R,

where c1, c2 are positive constants and 1 � p � q. Regularity and existence of solutions of 
elliptic equations with ( p, q)-growth conditions were studied in [24].

The analysis of non-autonomous energy functionals with energy density changing its ellip-
ticity and growth properties according to the point was developed in several remarkable papers 
by Mingione et al [7–13]. These contributions are related to the works of Zhikov [36, 38], and 
they describe the nature of certain phenomena arising in nonlinear elasticity. For instance, 
Zhikov was interested in providing models for strongly anisotropic materials in the frame-
work of homogenization. The associated functionals also demonstrated their importance in 
the study of duality theory as well as in the context of the Lavrentiev phenomenon [37]. In 
relationship with these research directions, Zhikov introduced three different model function-
als, mainly in the context of the Lavrentiev phenomenon. These models are the following:

M(u) :=
∫

Ω

c(x)|Du|2dx, 0 < 1/c(·) ∈ Lt(Ω), t > 1

V(u) :=
∫

Ω

|Du| p(x)dx, 1 < p(x) < ∞

Pp,q(u) :=
∫

Ω

(|Du| p + a(x)|Du|q) dx, 0 � a(x) � L, 1 < p < q.

�

(1.2)
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The functional M is characterized by a loss of ellipticity on the subset of Ω where the 
potential c vanishes. This functional has been studied in relationship with nonlinear equa-
tions  involving Muckenhoupt weights. The functional V  is still the object of great interest 
nowadays and several relevant papers have been developed about it. We refer to Acerbi and 
Mingione [1] in the context of gradient estimates and contributions to the qualitative analysis 
of minimizers of nonstandard energy functionals with variable coefficients. We also point 
out the abstract setting, respectively the variational analysis developed in the monograph 
by Rădulescu and Repovš [32] (see also the survey papers [30, 31]). The energy functional 
defined by V  has been used to build consistent models for strongly anisotropic materials: in 
a material made of different components, the exponent p(x) dictates the geometry of a com-
posite that changes its hardening exponent according to the point. The functional Pp,q defined 
in (1.2) appears as un upgraded version of V . Again, in this case, the modulating potential 
a(x) controls the geometry of the composite made by two differential materials, with corre
sponding hardening exponents p  and q.

Following Marcellini’s terminology, the functionals defined in (1.2) belong to the realm of 
energy functionals with nonstandard growth conditions of (p, q)-type. These are functionals of 
the type defined in relation (1.1), where the energy density satisfies

|ξ| p � f (x, ξ) � |ξ|q + 1, 1 � p � q.

An alternative relevant example of a functional having ( p, q)-growth is given by

u �→
∫

Ω

|Du| p log(1 + |Du|) dx, for p � 1,

which can be seen as a logarithmic perturbation of the classical p -Dirichlet energy. We refer 
to Mingione et al [7–13] for more details. We also point out the recent paper by Cencelj et al 
[11] in the framework of double phase problems with variable growth.

The main feature of our paper is the study of a class of unbalanced double phase problems 
with variable coefficient. This problem is strictly connected with the analysis of nonlinear 
patterns and stationary waves for transonic flow models. We refer to the pioneering work 
of Morawetz [26–28] on the theory of transonic fluid flow—referring to partial differential 
equations that possess both elliptic and hyperbolic regions—and this remains the most fun-
damental mathematical work on this subject. The flow is supersonic in the elliptic region, 
while a shock wave is created at the boundary between the elliptic and hyperbolic regions. In 
the 1950s, Morawetz used functional-analytic methods to study boundary value problems for 
such transonic problems.

Throughout this paper we assume that Ω ⊂ RN is a bounded domain with smooth bound-
ary. Let n, m be nonnegative integers such that N  =  n  +  m, hence RN = Rn × Rm. An element 
z ∈ Ω is written as z = (x, y), where x ∈ Rn and y ∈ Rm. The energy studied in this paper is 
somehow related to the functional Pp,q(u) defined in (1.2) and is of the type

∫

Ω

|gradxu|G(x,y)
+ |x|γ

∣∣gradyu
∣∣G(x,y)

G(x, y)
dz.� (1.3)

In such a case, the variable coefficient G(x, y) describes the geometry of a composite real-
ized by using two materials with corresponding behaviour described by |gradxu|G(x,y) and 
|gradyu|G(x,y). Then in the region {z ∈ Ω : x �= 0} the material described by the second inte-
grand is present. In the opposite case, the material described by the first integrand is the only 
one that creates the composite.
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We also point out that the integral functional (1.3) is a double phase energy with variable 
coefficient due to the presence of the unbalanced terms |gradxu|G(x,y) and |gradyu|G(x,y) com-
bined with the weight |x|γ .

The differential operator associated to (1.3) is degenerate and of mixed type. This operator 
is

divx

(
|gradx|G(x,y)−2gradxu

)
+ divy

(
|x|γ

∣∣grady

∣∣G(x,y)−2
gradyu

)
,� (1.4)

where G(x, y) is a variable coefficient.

1.1.  Degenerate operators of mixed type

In 1923, Tricomi [34] began the study of second-order partial differential equations of mixed 
type by introducing the operator

T :=
∂2

∂x2 + x
∂2

∂y2 .

This operator is elliptic on {(x, y) ∈ R2 : x > 0}, hyperbolic on {(x, y) ∈ R2 : x > 0}, and 
degenerate on {(x, y) ∈ R2 : x = 0}.

An interesting application of this class of elliptic-hyperbolic differential operators can be 
found in relationship with the theory of planar transonic flow, see [22]. The associated waves 
are steep wavefronts that propagate in compressible fluids in which convection dominates dif-
fusion. They are fundamental in nature, especially in high-speed fluid flows. Many such shock 
reflection/diffraction problems can be formulated as boundary value problems involving non-
linear partial differential equations of mixed elliptic-hyperbolic type.

Numerous attempts have been made recently in order to study the Tricomi operator T as 
well as some extensions obtained either by substituting the degeneracy x with a function g(x) 
or by replacing the second-order derivative ∂2

y  with the Laplace operator.
In a different context and for different purposes, Baouendi [6] and Grushin [18] considered 

other classes of degenerate operators, an example is given by

∂2

∂x2 + x2r ∂2

∂y2 , r ∈ N.� (1.5)

The Baouendi–Grushin operator can be viewed as the Tricomi operator for transonic flow 
restricted to subsonic regions. On the other hand, a second-order differential operator T in 
divergence form on the plane, can be written as an operator whose principal part is a Baouendi–
Grushin-type operator, provided that the principal part of T is nonnegative and its quadratic 
form does not vanish at any point, see [16].

Let us introduce G2r := ∆x + |x|2r∆y, with x ∈ Rn, y ∈ Rm, and n  +  m  =  N. This opera-
tor can be seen as the N-dimensional analogue of (1.5). If z = (x, y) ∈ RN , we notice that the 
operator G2r can be rewritten, with a suitable choice of function aα, in the following form:

Lu :=
∑
|α|

Dα
z (aα(z, u)).

This class of differential operators was studied by Mitidieri and Pokhozhaev [25] and 
D’Ambro-Sio [15].

Let Ω ⊂ RN be a bounded domain with smooth boundary. Assume that N  =  n  +  m. We 
now introduce the Baouendi–Grushin operator with variable coefficient. Let us consider the 
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continuous function G : Ω → (1,∞). We introduce the nonhomogeneous operator ∆G(x,y) 
defined by

∆G(x,y)u = div (gradG(x,y)u)

= divx(|gradx|
G(x,y)−2 gradxu) + divy(|x|γ

∣∣grady

∣∣G(x,y)−2
gradyu)

=

n∑
i=1

(
|gradx|

G(x,y)−2 uxi

)
xi

+ |x|γ
m∑

i=1

(∣∣grady

∣∣G(x,y)−2
uyi

)
yi

,

where

gradG(x,y)u = A(x)

[
|gradx|

G(x,y)−2 gradxu

|x|γ
∣∣grady

∣∣G(x,y)−2
gradyu

]

and

A(x) =
[

In On,m

Om,n |x|γ Im

]
∈ MN×N(R).

Then the operator ∆G(x,y) is degenerate along the m-dimensional subspace M := {0} × Rm 
of RN .

The present paper complements our previous contributions related to double phase aniso-
tropic variational integrals, see [33, 35]. This paper also extends our recent results established 
in [3] to a mixed elliptic-hyperbolic setting. In this way, Euclidean results mentioned above 
continue to be a source of inspiration for the problem of finding analogues and new inequali-
ties on the sub-Riemannian space RN = Rm × Rn defined by the sub-elliptic gradient, which 
is the N-dimensional vector field given by

gradγ = (gradx, |x|γgrady) = (X1, . . . , Xm, Y1, . . . , Yn)

with the corresponding Baouendi–Grushin vector fields

Xi = |gradx|
G(x,y)−2 ∂

∂xi
, i = 1, . . . , m

and

Yj = |x|γ
∣∣grady

∣∣G(x,y)−2 ∂

∂yj
, j = 1, . . . , n.

In the isotropic case corresponding to G(x, y) ≡ 2, the above vector fields Xi and Yj  are 
homogeneous of degree one with respect to the dilation

Xi(δλ) = λδλ(Xi), Yj(δλ) = λδλ(Yj),

where the anisotropic dilation δλ is defined by δλ(x, y) := (λx,λ1+γy). However, ∆2 is 
not translation invariant in RN  but it is invariant with respect to the translations along M. 
Assuming that G(x, y) ≡ 2 and γ = 1/2, then the operator ∆G(x,y) is intimately connected to 
the sub-Laplacians in groups of the Heisenberg type. Finally, we point out that if γ  is an even 
positive integer, then the Baouendi–Grushin operator is a sum of squares of C∞ vector fields 
satisfying the Hörmander condition.

A Bahrouni et alNonlinearity 32 (2019) 2481
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2.  A weighted inequality for ∆G

One of the many significant contributions by Hardy and Littlewood on the subject of 
inequalities, and in particular integral inequalities involving derivatives of functions, can 
be found in their joint paper [19]. This paper subsequently formed the basis of Chapter VII 
of the book of Hardy, Littlewood and Pólya [20]; that chapter is essentially concerned with 
the applications of the calculus of variations to integral inequalities, but it also involves 
direct analytical methods required to avoid difficulties of singular problems and unattained 
bounds in the calculus of variations. In [10] Caffarelli, Kohn and Nirenberg proved a 
rather general interpolation inequality with weights, which extends the Hardy–Littlewood 
inequality. We refer to [2, 14, 21] for related inequalities in the context of Grushin-type 
operators. In this section, motivated by the results obtained in our recent paper [3] in the 
framework of variable exponent, we first establish a Caffarelli–Kohn–Nirenberg inequality 
for ∆G . Next, we deduce a compactness property of an anisotropic function space. This 
abstract result will play a key role in the mathematical analysis of a boundary value prob-
lem driven by the Baouendi–Grushin operator.

We define

G+ := sup{G(x, y) : (x, y) ∈ Ω} and G− := inf{G(x, y) : (x, y) ∈ Ω}.

We suppose that the domain Ω intersects the degeneracy set [x  =  0], that is,

Ω ∩ {(0, y) : y ∈ Rm} �= ∅.

Throughout this paper, we denote by | · |p(z) the norm in the Lebesgue space with variable 
exponent L p(z)(Ω). For general properties of function spaces with variable exponent we refer 
to [32].

Theorem 2.1.  Assume that G is a function of class C1 and that G(x, y) ∈ (2, N) for all 
(x, y) ∈ Ω. Then there exists a positive constant β such that for all u ∈ C1

c(Ω)∫

Ω

(1 + |x|γ)|u|G(x,y) dxdy � β

∫

Ω

(|gradxu|G(x,y) + |x|γ |gradyu|G(x,y))dxdy

+ β

∫

Ω

|u|G(x,y)−1(1 + u2)(|gradxG(x, y)|+ |x|γ |gradyG(x, y)|) dxdy.

Proof.  We define the functions W1, W2 : Rn × Rm → Rn × Rm  by

W1(x, y) = (x, 0m) =: (I1(x), 0m) and W2(x, y) = (0n, y) =: (0n, I2(y)).

Then for all (x, y) ∈ Ω

div (W1(x, y) |u|G(x,y)
) = |u|G(x,y)div (W1) + G(x, y)|u|G(x,y)−2ugradu · W1

+|u|G(x,y) log(|u|)gradG · W1

= |u|G(x,y)divx (I1(x)) + G(x, y)|u|G(x,y)−2ugradxu · I1(x)

+|u|G(x,y) log(|u|)gradxG(x, y) · I1(x)
�

(2.1)

A Bahrouni et alNonlinearity 32 (2019) 2481
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and

div (|x|γ |u|G(x,y)W2(x, y)) = |x|γ |u|G(x,y)divy (I2(y))

+|x|γG(x, y)|u|G(x,y)−2ugradyu · I2(y)

+|x|γ |u|G(x,y) log(|u|)gradyG(x, y) · I2(y).

�

(2.2)

By the flux-divergence theorem we have for all u ∈ C1
c(Ω)∫

Ω

div (|u|G(x,y)W1(x, y)) dxdy =

∫

Ω

div (|x|γ |u|G(x,y)W2(x, y)) dxdy = 0.� (2.3)

Combining relations (2.1)–(2.3) and [3, lemma 3.1], we can deduce that
∫

Ω

|u|G(x,y)divx (I1(x)) dxdy �
∫

Ω

|u|G(x,y)| log(|u|)||gradxG(x, y)||I1(x)| dxdy

+ G+

∫

Ω

|u|G(x,y)−1|gradxu||I1(x)| dxdy

� µ‖W1‖L∞(Ω)

∫

Ω

|gradxG(x, y)| |u|G(x,y)−1(u2 + 1) dxdy

+ εG+‖W1‖L∞(Ω)

∫

Ω

|u|G(x,y) dxdy + G+ ‖W1‖L∞(Ω)

εG−−1

∫

Ω

|gradxu|G(x,y) dxdy.

Similarly, we have
∫

Ω

|x|γ |u|G(x,y)divy (I2(x)) dxdy � µ‖W2‖L∞(Ω)

∫

Ω

|x|γ |gradyG(x, y)||u|G(x,y)−1(u2 + 1) dxdy

+ εG+‖W2‖L∞(Ω)

∫

Ω

|x|γ |u|G(x,y)dxdy

+ G+ ‖W2‖L∞(Ω)

εG−−1

∫

Ω

|x|γ |gradyu|G(x,y)dxdy.

�

(2.4)

Combining these relations and taking into account that div (W1) = n and div (W2) = m, 
we deduce that

[2 − εG+(‖W1‖L∞(Ω) + ‖W2‖L∞(Ω))]

∫

Ω

(1 + |x|γ)|u|G(x,y)dxdy

� G+ ‖W1‖L∞(Ω) + ‖W2‖L∞(Ω)

εG−−1

∫

Ω

(|gradxu|G(x,y) + |x|γ |gradyu|G(x,y)) dxdy

+ c
∫

Ω

|u|G(x,y)+1(|gradxG(x, y)|+ |x|γ |gradyG(x, y)|) dxdy

+ µ(‖W1‖L∞(Ω) + ‖W2‖L∞(Ω))

∫

Ω

|u|G(x,y)−1(|gradxG(x, y)|+ |x|γ |gradyG(x, y)|) dxdy,

with c = µ(‖W1‖L∞(Ω) + ‖W2‖L∞(Ω)). So, by choosing

ε <
2

G+(‖W1‖L∞(Ω) + ‖W2‖L∞(Ω))
,
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we set

β =
(
‖W1‖L∞(Ω) + ‖W2‖L∞(Ω)

) max(µ, G+

εG−−1 )

2 − εG+(‖W1‖L∞(Ω) + ‖W2‖L∞(Ω))
.

This completes the proof of theorem 2.1.� □ 

We denote by W  the closure of C1
c(Ω) with respect to the norm

‖u‖ = |gradxu|G(x,y) +
∣∣∣|x| γ

G(x,y) gradyu
∣∣∣
G(x,y)

+
∣∣∣u(|gradxG(x, y)|+ |x|γ |gradyG(x, y)|)

1
G(x,y)+1

∣∣∣
G(x,y)+1

+
∣∣∣u(|gradxG(x, y)|+ |x|γ |gradyG(x, y)|)

1
G(x,y)−1

∣∣∣
G(x,y)−1

.

We now establish the following compactness property.

Lemma 2.2.  Assume that G is a function of class C1 and that G(x, y) ∈ (2, N) for all 
(x, y) ∈ Ω. Furthermore, suppose that 0 < γ < N(G−−s)

s  and 1  <  s  <  G−. Then the function 
space W  is compactly embedded in Ls(Ω).

Proof.  Let (un) be an arbitrary bounded sequence in W . Since the domain Ω is assumed to 
intersect the degeneracy set [x  =  0], we deduce that there are y0 ∈ Rm and R  >  0 such that the 
ball of radius R centered at (0n, y0) is included in Ω. Thus, there exists 0 < ε0 < min(1, R) 
such that Dε0 ⊂ BR(0n, y0) ⊂ Ω, with

Dε0 = {(x, y) ∈ BR(0n, y0) : |x| < ε0} .

We fix arbitrarily ε > 0 with ε < ε0 and set

Dε =
{
(x, y) ∈ Rn+m : |x| < ε and |(x, y)− (0n, y0)| < R

}
.

By theorem 2.1, the sequence (un) is bounded in LG(x,y)(Ω \ Dε). Consequently, (un) is bound-
ed in the space W1,G(x,y)(Ω \ Dε). Since W1,G(x,y)(Ω \ Dε) is continuously embedded into 
W1,G−

(Ω \ Dε), we deduce that the sequence (un) is bounded in W1,G−
(Ω \ Dε).

By the Rellich–Kondratchov embedding theorem, we know that there is a convergent sub-
sequence of (un) in Ls(Ω \ Dε). Thus, for any large enough n and m we have

∫

Ω\Dε

|un − um|sdx < ε.� (2.5)

By the Hölder inequality for variable exponents (see [32, p 8]) we have
∫

Dε

|um − un|s dxdy =

∫

Dε

1

|x|
sγ

G(x,y)
|x|

sγ
G(x,y) |um − un|s dxdy

� 2

∣∣∣∣∣
1

|x|
sγ

G(x,y)

∣∣∣∣∣
(

G(x,y)
s )′

∣∣∣|x| sγ
G(x,y) |um − un|s

∣∣∣
G(x,y)

s

,

where (G(x,y)
s )′ = G(x,y)

G(x,y)−s .

A Bahrouni et alNonlinearity 32 (2019) 2481
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By theorem 2.1 and since for all (x, y) ∈ Dε we have |x| < ε � 1, we obtain

∣∣∣|x| sγ
G(x,y) |um − un|s

∣∣∣
G(x,y)

s

�

(∫

Ω

|x|γ |um − un|G(x,y) dxdy
)s/G−

+

(∫

Ω

|x|γ |um − un|G(x,y) dxdy
)s/G+

< ∞.

If ρ  denotes the modular function in the Lebesgue space with the variable exponent 
G(x, y)/[G(x, y)− s] (see [32, p 9]), we observe that

∣∣∣∣∣
1

|x|
sγ

G(x,y)

∣∣∣∣∣
(

G(x,y)
s )′

�

[
ρ

(
1

|x|
sγ

G(x,y)

)]((
G(x,y)

s )′)+

+

[
ρ

(
1

|x|
sγ

G(x,y)

)]((
G(x,y)

s )′)−

.

Define Ω1 = {x ∈ Rn, |x| < ε} and Ω2 = {y ∈ Rm, |y − y0| < R}. It follows that Dε ⊂ Ω1×  
Ω2 = {(x, y) ∈ Rn+m : |x| < ε, |y − y0| < R}. Then

∫

Dε

1

|x|
sγ

G(x,y)−s
dxdy �

∫

Ω

|x|
−sγ

G−−s dxdy �
∫

Ω1×Ω2

|x|
−sγ

G−−s dxdy

= |Ω2|
∫

Ω1

|x|
−sγ

G−−s dx =

∫ ε

0
wntN−1− sγ

G−−s dt = cεN− sγ
G−−s ,

where wN is the area of the unit sphere in RN . Invoking the above estimates, we infer that
∣∣∣∣∣

1

|x|
sγ

G(x,y)

∣∣∣∣∣
(

G(x,y)
s )′

� c(εα1 + εα1),

where α1,α2 are positive constants. It follows that
∫

Ω

|um − un|sdxdy � c(ε+ εα1 + εα1).

This shows that (un) is a Cauchy sequence in Ls(Ω), hence the proof is concluded.� □ 

3.  A nonlinear problem driven by ∆G

We study the following boundary value problem
{
−∆G(x,y)u + A(x, y)(|u|G(x,y)−1 + |u|G(x,y)−3)u = λ |u|s−2 u in ∂Ω

u = 0 on ∂Ω,
� (3.1)

where λ > 0 and

A(x, y) = |gradxG(x, y)|+ |x|γ |gradyG(x, y)| for all (x, y) ∈ Ω.

Definition 3.1.  We say that u ∈ W  is a weak solution of problem (3.1) if for all v ∈ W \ {0}
∫

Ω

[
|gradxu|G(x,y)−2 gradxugradxv + |x|γ

∣∣gradyu
∣∣G(x,y)−2

gradyugradyv
]

dxdy

+

∫

Ω

A(x, y) |u|G(x,y)−3
(u2 + 1)uv dxdy = λ

∫

Ω

|u|s−2 uv dxdy.
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We will say that the corresponding real number λ for which problem (3.1) has a non-
trivial solution is an eigenvalue and the corresponding u ∈ W \ {0} is an eigenfunction of the 
problem. These terms are in accordance with the related notions introduced by Fučik, Nečas, 
Souček, and Souček [17, p 117] in the context of nonlinear operators. Indeed, if we denote

S(u) :=
∫
Ω

1
G(x, y)

[
|gradxu|G(x,y)

+ |x|γ
∣∣gradyu

∣∣G(x,y)
]

dxdy

+
∫
Ω

A(x, y)

[
|u|G(x,y)+1

G(x, y) + 1
+

|u|G(x,y)−1

G(x, y)− 1

]
dxdy

and

T(u) :=
∫

Ω

|u|s−2 uv dxdy

then λ is an eigenvalue for the pair (S, T) of nonlinear operators (in the sense of [17]) if and 
only if there is a corresponding eigenfunction that is a solution of problem (3.1) as described 
in definition 3.1.

The next result establishes the existence of an infinite interval of eigenvalues. This property 
corresponds to arbitrary perturbations of the reaction term, namely existence of nontrivial 
solutions with respect to any positive parameter λ.

Theorem 3.2.  Assume that G is a function of class C1 and that G(x, y) ∈ (2, N) for all 
(x, y) ∈ Ω. We also suppose that 0 < γ < N(G−−s)

s  and 1  <  s  <  G−  −  1. Then any λ > 0 is an 
eigenvalue of problem (3.1).

The energy functional associated to problem (3.1) is E : W → R defined by

E(u) =
∫

Ω

1
G(x, y)

[
|gradxu|G(x,y)

+ |x|γ
∣∣gradyu

∣∣G(x,y)
]

dxdy

+

∫

Ω

A(x, y)

[
|u|G(x,y)+1

G(x, y) + 1
+

|u|G(x,y)−1

G(x, y)− 1

]
dxdy − λ

s

∫

Ω

|u|s dxdy.

Then E is of class C1 and for all u, v ∈ W

〈E ′(u), v〉 =
∫

Ω

[
|gradxu|G(x,y)−2 gradxugradxv + |x|γ

∣∣gradyu
∣∣G(x,y)−2

gradyugradyv
]

dxdy

+

∫

Ω

A(x, y) |u|G(x,y)−3
(u2 + 1)uvdxdy − λ

∫

Ω

|u|s−2 uv dxdy.

We recall that W  is the closure of C1
c(Ω) under the norm

‖u‖ = |gradxu|G(x,y) +
∣∣∣|x| γ

G(x,y) gradyu
∣∣∣
G(x,y)

+
∣∣uA(x, y)1/(G(x,y)+1)

∣∣
G(x,y)+1

+
∣∣uA(x, y)1/(G(x,y)−1)

∣∣
G(x,y)−1 .

Thus, taking into account the expression of E ′ : W → W∗, we can deduce that E ′ is well-
defined and bounded.

The proof of theorem 3.2 is based on the following ideas:

	 (i)	�energy estimates, namely the existence of a ‘valley’ far from the origin and of a ‘moun-
tain’ for E near the origin; 

	(ii)	�existence of a negative relative minimum for E and a sequence of ‘almost critical points’ 
for the energy, for any λ > 0.
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The main ingredients of the proof are the compactness property established in lemma 2.2 
and the Ekeland variational principle, which is the nonlinear version of the Bishop–Phelps 
theorem.

Lemma 3.3. 

	 (i)	�There exists φ � 0 in W  such that E(tφ) < 0 for all small enough t  >  0.
	(ii)	�For all λ > 0, there exist positive numbers ρ  and α such that E(u) � α for all u ∈ W  

with ‖u‖ = ρ.

Proof. 

	 (i)	�Fix φ ∈ W \ {0} with φ � 0 and ‖φ‖ < 1. For all t ∈ (0, 1) we have

E(tφ) �
tG−

G−

∫

Ω

|gradxφ|G(x,y)dxdy +
tG−

G−

∫

Ω

|x|γ |gradyφ|G(x,y)dxdy

+
tG−+1

G− + 1

∫

Ω

A(x, y)φG(x,y)+1dxdy +
tG−−1

G− − 1

∫

Ω

A(x, y)φG(x,y)−1dxdy − λ
ts

s

∫

Ω

φsds

= C1tG−
+ C2tG−+1 + C3tG−−1 − λC4ts,

		 where C1, C2, C3 and C4 are positive numbers.

		 Since s  <  G−  −  1, our assertion follows for small enough t  >  0.
	(ii)	�For all u ∈ W  we have

E(u) �
1

G+

∫

Ω

[
|gradxu|G(x,y) + |x|γ |gradyu|G(x,y)

]
dxdy

+
1

G+ + 1

∫

Ω

A(x, y)|u|G(x,y)+1dxdy +
1

G+ − 1

∫

Ω

A(x, y)|u|G(x,y)−1dxdy

−λ

s

∫

Ω

|u|sds.

�
(3.2)

By lemma 2.2, there exists β > 0 such that

|u|s � β ‖u‖ , for all u ∈ W .

We fix ρ > 1 and assume that ‖u‖ = ρ. By relation (3.2) we obtain, for a suitable positive 
constant C depending only on G+ and G−,

E(u) � C ‖u‖G−−1 − λ
βs

s
‖u‖s = CρG−−1 − λ

βs

s
ρs.

Taking higher and higher values of ρ , we deduce our statement for all λ > 0.� □ 

By lemma 3.3 we can deduce that there exists big enough ρ > 0 such that

inf{E(u) : u ∈ W , ‖u‖ � ρ} =: m < 0

and

sup{E(u) : u ∈ W , ‖u‖ = ρ} > 0.

Let M be the complete metric space defined by M := {u ∈ W : ‖u‖ � ρ}. Applying 
Ekeland’s variational principle to E restricted to M we find a sequence (un) ⊂ W  of ‘almost 
critical points’ of E, that is,

E(un) → m < 0 and E ′(un) → 0 as n → ∞.� (3.3)
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Since (un) is bounded it follows that, up to a subsequence, un ⇀ u in W . Next, by lemma 
2.2, we can assume that un → u in Ls(Ω). Combining this information with (3.3) and the fact 
that E ′ is a mapping of type (S+ ), we deduce that un → u in W , hence u is a nontrivial solution 
of problem (3.1). This concludes the proof of theorem 3.2.

4.  Concluding remarks, perspectives, and open problems

	 (i)	�Patterns and waves are all around us. They occur in many different systems and on vastly 
different scales in both time and space, and their dynamic behavior is similar across these 
systems. Mathematical techniques can help identify the origins and common properties 
of patterns and waves across various applications. Understanding the ways in which such 
structures are created can help experimentalists identify the mechanisms that generate 
them in specific systems. Despite many advances, understanding patterns and waves 
associated to transonic flows still poses significant mathematical challenges. To illustrate 
the difficulties, we have considered in this paper a case in which one has developed a 
partial differential equation that possesses both elliptic and hyperbolic regions. The flow 
is supersonic in the elliptic region, while a shock wave is created at the boundary between 
the elliptic and hyperbolic regions. The model studied in this paper is described by a 
Baouendi–Grushin operator, which can be seen as the Tricomi operator in the framework 
of the transonic flow restricted to subsonic regions. We were interested in assessing the 
existence of stationary waves under arbitrary perturbations of the reaction, which cor-
responds to the study of a suitable nonlinear eigenvalue problem.

	(ii)	�The mathematical analysis carried out in this paper considers the unbalanced energy 
defined in (1.3) with the associated differential operator defined in (1.4). It appears to be 
worth to further investigate patterns described by the variational integral

∫

Ω

(
|gradxu|G(x,y)

+ |x|γ
∣∣gradyu

∣∣G(x,y)
)

dz� (4.1)

		 with corresponding anisotropic Baouendi–Grushin operator

divx

(
G(x, y) |gradx|G(x,y)−2gradx

)
+ divy

(
G(x, y) |x|γ

∣∣grady

∣∣G(x,y)−2
grady

)
.

	(iii)	�We remark that since the energy functionals introduced in relations (1.3) and (4.1) have a 
degenerate action on the set where the gradient vanishes, it is a natural question to study 
what happens if the integrand is modified in such a way that, if |gradu| is also small, there 
exists an imbalance between the two terms of every integrand.

	(iv)	�Lemma 2.2 played a key role in the proof of the existence of an interval of eigenvalues 
for problem (3.1). This compactness property is established in a subcritical setting, which 
corresponds to the hypothesis s  <  G−, where s describes the growth of the right-hand side 
of problem (3.1). In fact, theorem 3.2 remains true if s is replaced with a variable coef-
ficient s(x), provided that s+ < G−. We do not have any knowledge about the behaviour 
in the almost critical case that arises in the following situation: there exists x0 ∈ Ω such 
that s(x0) = G− and s(x)  <  G− for all x ∈ Ω \ {x0}.

	(v)	�The weighted inequality established in theorem 2.1 is stated under the hypothesis that the 
variable coefficient is of class C1. We consider that a valuable research direction (with 
relevant applications to nonsmooth mechanics) corresponds to potentials leading to a 
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lack of regularity. For instance, if G is locally Lipschitz, one can use the notion of Clarke 
generalized gradient. We do not know of any version of theorem 2.1 for potentials G 
having loss of regularity.

	(vi)	�In a forthcoming paper, we will study new classes of nonlinear boundary value problems 
involving the magnetic Baouendi–Grushin operator, see [2, 21]. This operator is

GA := −(gradG + iβA0)
2 for − 1

2
� β �

1
2

,

		 where

A0 = (A1,A2,A3,A4) =

(
−
∂yd
d

,
∂xd
d

,−2y
∂td
d

, 2x
∂td
d

)
,

		

gradG = (∂x, ∂y, 2x∂t, 2y∂t),

		 with z = (x, y), |z| =
√

x2 + y2 , and d(z, t) = (|z|4 + t2)1/4 is the Kaplan distance.
	(vii)	�We believe that the approaches and techniques developed for studying problem (3.1) can 

be useful for the qualitative analysis of further classes of nonlinear problems described 
by mixed type operators, either stationary or evolutionary. These degenerate or singular 
problems include the von Neumann problem (which describes the shock reflection-dif-
fraction by two-dimensional wedges with concave corner), the Lighthill problem (which 
describes the shock diffraction by two-dimensional wedges with convex corner), and 
the Prandtl–Meyer problem (in the framework of supersonic flows impinging onto solid 
wedges). These models describe very relevant phenomena that arise in fluid mechanics. 
At the same time, they are also fundamental mathematical models in the theory of 
multidimensional conservation laws. These reflection/diffraction configurations are the 
core configurations in the structure of global entropy solutions of the two-dimensional 
Riemann problem for hyperbolic conservation laws, whereas the Riemann solutions 
are the building blocks and local structure of general solutions, and determine global 
attractors and asymptotic states of entropy solutions, as time tends to infinity, for multidi-
mensional hyperbolic systems of conservation laws. In this sense, we have to understand 
the reflection/diffraction phenomena in order to fully comprehend global entropy solu-
tions to multidimensional hyperbolic systems of conservation laws.
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