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Abstract

We prove a criterion for approximability by embeddings &f" of a general position map
f:K— R2"~1 from a closedi-manifold (forn > 3). This approximability turns out to be equivalent
to the property thatf is a projected embedding, i.e., there is an embedding: K — R?" such
that f = o f, wherer :R?" — R2'~1 is the canonical projection. We prove that foe= 2, the
obstruction modulo 2 to the existence of such a nfafs a product of Arf-invariants of certain
guadratic formsl 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Throughout this paper we shall work in the smooth category. A fhaf — R™ is said
to beapproximable by embeddings if for eache > 0 there is an embedding: K — R™,
which is e-close to f. This notion appeared in studies of embeddability of compacta
in Euclidean spaces—for a recent survey see [15, §9] (see also [2], [8, §4], [14], [16,
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Introduction]). Letr : R”*1 — R™ be the canonical projection andR” — R”*1 the
canonical inclusion. For a smoathmanifold K, the properties of an embeddirfg K —
R™** (e.g., the cobordism class gf. the Euler class of the normal bundle (K ), etc.)
can be investigated by means of singularities of the projedfienr o f: K — R™ [6,7,
23]. Amapf: K — R" is called aprojected embedding from R if there is a (smooth)
embeddingf : K — R™*k such thatf = o f. Evidently, if

(P) f is a projected embedding froRr"+*,
then

(A) the mapi o f is approximable by smooth embeddings.
The converse is false, as the example of a constant map shows. We conjecture that the
converse is true fogeneral position mapsf (at least form + k > 3(n + 1) /2). We prove
this conjecture fok =1 andm =2n — 1> 5 (fork =m =n = 1 it is obvious, cf. [18]).

Theorem 1.1. For every integer n > 3, every closed n-manifold K and any general
position map f:K — R%~1 each of the properties (A) and (P) is equivalent to the
following:
(1.1.1) 1 does not contain any submap r (that is, K does not contain X" such that
flx» = j or, where j: Y" — R?~1 jsan embedding).

HereX" = D"™1 x I/{(x,0) ~ (—=x, D}, ¥" = X"/{(0,1) ~ (O, [t + 3])} andr: X" —
Y" is the projection. Proof of Theorem 1.1 is based on the fact that the property (A) implies
the approximability off by projected embeddings, and on the equivalgfes (1.1.1)
for n > 3 (this is a folklore result, see also [24]).

Corollary 1.2. If K is an n-manifold such that w,_1,1(K) # 0 (thisis possible only if n
isa power of 2, eg., K = RP2), then for any general position immersion f: K — R21—1
neither (A) nor (P) hold.

Corollary 1.2 generalizes the well-known fact that the Boy immer&idtt — RS is
neither projected embedding fraRf nor approximable by embeddings.

The implication(A) = (1.1.1) is true even fom = 2. The converse is false far= 2
(Example 1.5). The main result of this paper (Theorem 1.4) is a relation between a
(complete) algebraic obstruction to (P) foe= 1, m = 2n — 1 = 3 and Arf-invariants of
certain quadratic forms. This is motivated by the unproved gase of a conjecture due
to Daverman [9]: is eveng”-like compactum embeddable inR?* for n > 1? To prove
this conjecture it suffices to prove that every mgip— S” ¢ R?* is approximable by
embeddings for > 1. This is so fom # 1, 2, 3, 7 (and thus the Daverman Conjecture is
true) [2,3], this is not so forn = 1, 3, 7 (and thus the Daverman Conjecture is probably
untrue) [18,2], and this is unknown far= 2. The proof of [2] suggests the following
approach to the case= 2:

(1) find which mapss? — R3 can be obtained by shifting a m&ff — 52 c R to

general position;
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(2) find for which general position map€ — R3, their composition with the inclusion
R3 — R* is approximable by embeddings.
We are now going to state the criterion for (P) in the case-2n — 1 =3,k = 1.
Consider the action o, on K x K, defined by exchanging the factors. For any map
f:K —R¥1 et

A(fy=Cl(x.y)eK x K [x#y, fx=fy} and A(f)=A(f)/Zo.

When f is fixed, we denote?(f) and A(f) briefly asA and A, respectively. IfK is an
n-manifold andf : K — R%'~1 is any smooth general position map, théris a disjoint
union of circles andA is a disjoint union of circles and arcs. There are m@ps) +— x
from A to K and[(x, y)] — fx from A to R?"~1, By general position, these maps are
immersions (forn > 3 embeddings). We shall identifd and A with their images (no
confusion will arise). For = 2, by general position, the set of triple points s finite
and f has no quadruple points. Note that triple pointgah R2 are triple self-intersection
points of A in RS,

Let K be a closed orientable surfacg; K — R3 a general position map arfl an
orientation onA. Choose an orientation oki. Every triple pointd of f is the intersection
of three sheet®1, Do, D3 C K. Let{a1, ap, a3} be the basis iiR3 at the pointZ, formed
by the vectors parallel tg DoN f D3, f D3N f D1, f D1N f D2, whose direction is defined
by the orientatior?” of A. Let {b1, bo, b3} be the basis iiR? at the point, formed by the
positive normal vectors of D1, f D2, f D3. The vectors:; andb; are parallel, but may
have opposite directions. If the numberagfandb; with the same directions is either 0
or 3, then call the triple poird resolvable (or of type A) with respect to the orientation
7. In the opposite case call nonresolvable (or of type B) with respect t&@ (cf. [4,
Definition 2]). It is easy to see that this definition does not depend on the choice of the
orientation ofK for connecteK.

Note that [4, Proposition 6] can be reformulated in the spirit of the Newton binomial
formula:|3, 0] — 3|2, 1| + 3|1, 2| — |0, 3| = 0, whergk, 3— k| is the number of triple points
of f for which the directions ok vectorse; andb; are the same and those @ — k) are
the opposite.

Theorem 1.3 [4]. For k =1, any closed orientable surface K and any general position
map f: K — R3, the property (P) is equivalent to the following:
(1.3.1) there is an orientation 7 on A such that all triple points of f are resolvable
with respect to 7.

We conjecture thaf1.3.1) < (A). Remark that although (1.3.1) obviously generalizes
to mapsk?* — R¥ c R* of an orientable manifol&, it is no longer necessary to (A)
or (P) by [2, Remark 4b on p. 9].

Now we are going to relate the condition of Theorem 1.3 and Arf-invariants of certain
quadratic forms (Theorem 1.4). LB(f, T ) € Z» be the number mod 2 of nonresolvable
triple points with respect taZ. Then 8(f) = [[, B(f.7) € Z> is an (incomplete)
obstruction to approximability of o f by embeddings. Take anye Hi(K, Z2) and a
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simple (embedded) closed curfec K, representing and avoiding singular points. By
general position, we may assume tifat is an embedding. Lef be a unit vector field,
normal to f (K) (it exists sincel. avoid the singular points). Define

q(f, 7T)x)= |k (L,&)+|LNsTAl mod2
mod 2

Here the map7:A — K is defined as follows. Take any poitd1, d») € A and take
the basig b1, b2, a} of R2 at the pointfdy = fd>, formed by the positive normal vectors
b1, b of the two sheets of K, corresponding tal; anddz, and the vector parallel to
the intersection of those sheets and directed along the orientatafnA. If this basis is
positive, then sety[(d1, d2)] = d1. In the opposite case set[(d1, d2)] = da.

Theorem 1.4. Let K be a closed orientable surface and f: K — R3 a general position
smooth map. Then ¢(f,7 ) is a well-defined quadratic form (i.e., it does not depend
on the choice of L), associated to the intersection form N on HY(K,Z,) (i.e, x Ny =
q(x)+q(y)+q(x+y) foreachx,y € Hi(K, Z2)), B(f, T ) =Arfq(f,7) (mod 2 and
B(f) =TIy Arfq(f.T) (mod 2.

For the case ok = §2 and a connected (1), Theorem 1.4 is due to Akhmetiev [4,
Theorem 3]. Our proof is an extension of [4, proof of Theorem 1.3]. It is based on the
fact thatg coincides with a certain form, defined for a characteristic surface of some 4-
manifold. In Corollary 2.1 we relate the quadratic fogrtf, t) to the standard quadratic
forms of an immersed surface R? [11].

Example 1.5. There is a closed orientable surfakeand an immersiorf : K — R3 such
thatg(f) = 1 (and hence neither (A) nor (P) hold).

Example 1.5 will be constructed by a modification of [1, Proposition 4], via surgery of
immersed surfaces along 1-handles (Section 2).

Note that our results are valid even if we repldg® by any 3-submanifold oR*.
In Section 3 we conjecture polyhedral versions of our results and present some related
problems.

2. Proofs

Proof of Theorem 1.1. It suffices to prove(P) & (1.1.1) « (A). The implication
(1.1.1) = (P) was actually proved in [2]. To prove th&P) = (1.1.1), observe that (P)
implies that for each double pointe A we can define the ordering on the two sheets of
fK,intersecting at, so that this ordering depends.ocontinuously, and such an ordering
does not exists near any connected component abrresponding to the abbreviatiowf

f. The implication(A) = (1.1.1) follows from the non-approximability by embeddings
of the map o j or. In fact, every map, close tpo r, contains a submapand hence is not

a projected embedding.0
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Proof of Corollary 1.2. By Theorem 1.1, it sufficies to prove that (P) does not hold.
If /:K — R%~1is an immersion and a projected embedding (fet 1), thenk x I
embeds intdR?” (this is proved either analogously to [17, proof of Theorem 1.5] or using
the equivalence of normal bundles of an immersien/ and of an embedding — R,
projected tof). If K is ann-manifold such thaiv,_1.1(K) # 0, thenK x I does not
embed intdR?".

Also, (P) does not hold by (1.1.4) (see Section 3) and the forewdép) = w,—1,1(K),
wheree : H(A; Zy) — 7 is the augmentation homomorphism [24, Theorem 1j.

Proof of Theorem 1.4. Fix an orientation7 on A. Analogously to [4, proof of
Criterion 1], we can construct a general position mapk — R* such thatr o f = f

and each self-intersection poidt € R* of f is projected onto a nonresolvable triple
pointd; € R3 of f. For each point; take a small balB]* c R?, centered at;. For each

x € Hi(K; Z), take a simple closed curéD? c K — f~1({; B;) representing . Since

R* — J; B} is simply connected, there is a generic immergjo? — R* — |, B; such
thatg|,p2 = flyp2. Let& be a normal vector field af D? in K. Then¢ defines a section
over g(3 D?) of the normal bundle og(D?) in R* — | J; B;. Lete € Z = H?(D?,dD?)

be the obstruction to the extension of this sectiorg(®?). Thene = Ik(3 D?, &) and
18(D?) N f(K)| = 3D? N s7 A|. Thereforeg(f, T)(x) = e + |g(D) N f(M)] (mod 2.

This is a well-defined quadratic form, associated with the intersection [11]. Therefore
q(f,7T) is a well-defined quadratic form, associated with the intersection. On the other
hand, Arflg) modulo 2 is the number of nonresolvable triple poiitef f with respect to

7T (the proof is a straightforward extension of [4, proof of Theorem 1.3f).

Construction of Example 1.5. Recall from [1, Proposition 4] the construction of an
immersiong : K — R3 (the Konstantinov torus) of the toru§ = 72, of an orientation
T on A(g) and proof of8(g, 7 ) = 1 (Fig. 1). The critical points curve of the projection
of the Konstantinov torus into the plane is shown on Fig. 1 [1, Figure 2B]. The immersion
itself is constructed by gluing of the upper surface (the torus with one §9)é)S; = X1,
the middle cylinderS,, 95> = Yo U X1, and the lower diskS3, 953 = X, along the
folded curvesXy and ¥1. The curveA intersects each cycle ofy in an even number
of points. The immersiomg is invariant under the rotation on the an@ with respect
to the axis, perpendicular to the plane of the projection in the central point of the Fig. 1.
Take the orientatio of A invariant under this rotation. For an arbitrary cydlec Sy
we have|L Ns7A| =0 (mod 2, because. intersects only lower component of A.
Therefore by [11] or by Corollary 2.1 below,(g,7 ) = g(g). By an easy calculation
(cf. [1, Corollary 22]), we have A = 1, hence by Theorem 1.8(g,7) = 1. For a
direct proof see [1, Theorem I, B].

The setA(g) is a union of circles (possibly, intersecting and self-intersecting). If there
is only one such circle, then there are exactly two (opposite) orientafiofis of A(g)
and thereforg8(g, 7) = B(g, T) = B(g) = 1. However, for the Konstantinov torus there
are 3 circles inA(g). We shall made a modification @f which will have the effect of
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Fig. 1.

decreasing the number of circles i containing triple points. In fact, the modification
will add several circles ta\, but they will not contain triple points.

Leta,b e A c R be any two points on distinct circles af(g). Take an ard c R3
joining a to b. By general position,N gK ={a =c1,c2,...,cpn—1=b}andl N A(g) =
{a, b}. Let U be a small neighborhood éf ThenU N A(g) = AU B, whereA andB are
small arcs containing andb, respectively. Now{/ N g(T2) = DgU D1 U---U D,,, where
Do, ..., D, are embedded 2-diskBoN D1 = A, D,,_1N D,, = BandD, N D, =@ for
(u,v) #(0,1), im — 1, m). Take a pair of 1-handled, H> C U, such that

H = H, =St x 1, HiNHy=11Ul>,
0H1=0Dgu 0Dy, 0Hy» =0D1 U 0Dy,

wherel; andl, are two arcs parallel tdé and {s,r} = {m — 1, m} (the choice of these
two possibilities will be specified below). Having made a surggii) — g1(K1) by the
handlesH; and H», we get

81(K1) = g[(K U HyU Hp) — (DoU D1 U D1 U Dyy)].

The curve A(g) is modified by a surgery by the handle L I2: we have A(gy) =
AUAU---UA,_2, WwhereA = (A(g) UL Ulp) — (ﬁ u é) and A, is a pair of small
curves, immersed in the didl, . We choos&d H1, d H2) (see above) so that the orientation
7 on A(g) induce an orientation ort’. Note that in the neighborhood of every digk,
there are two triple points gf;.
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Letg — g1 — --- — gr = f be a sequence of such surgeries, wherel equals to
the number of connected componentsirg). We haveA(f) = A’ U, Ay, whereA’
is a circle, A, is a union of two circles andi, N A, = @ for u # v. The numbers of
nonresolvable triple points of on the two circles ofA,, (with respect to any of the four
orientations ory,,) are the same. (In fact, we may assume that there is a planeh that
under the mirror symmetry with respectdo A, is invariant and the two triple points y
of A, exchange their positions. Recall the definition of resolvable and nonresolvable triple
points. Fix any of the four orientations on the two circlesfgf. Under the above mirror
symmetry vectors,, az,, az, at the pointx goes to vectoray,, az,, az, at the pointy,
and vectors, by, b3, at the pointx goes to vectors-b1,, —bo,, —bs, at the pointy.
Therefore pointsc and y are resolvable or nonresolvable simultaneously.) The number
mod 2 of nonresolvable triple points ¢gf on A’ outsidel J, A, (with respect to any of
the two opposite orientations af') equals to8(g, 7 ) = (g, 7 ) = 1. So for an arbitrary
orientation7 on A(f), we have8(f, 7 ) =1, and therefor@g(f)=1. O

Corollary 2.1. Let f: K — R3 be an immersion of a closed orientable surface and 7
an orientation on A(f) such that [s;7A(f)] = 0e HYK;Z,). Then Arf(q(f, 7)) =
B(f,T)=1f],where[f] e 5 = Zy correspondsto f.

Proof. By [26], the cobordism group of such immersiofisk — R can be identified
with 75. Given such an immersioff : K — R3, one can define the quadratic function
qr-H1(K;Zp) — R as follows:q¢(x) = Ik(L,&), whereL is an embedded curve in

K representinge, and& is the normal field of the immersion. Pontrjagin proved that
the Arf invariant of thisg ; is a cobordism invariant and gives an isomorphism between
w5 and Zp. We shall identify the cobordism clagg’] € =5 of f with Arfg,. Earlier

we have defined;(f,7) as IKL, &) + [L N s7]. By the assumption of the corollary,
[LNs7]1=0,henceyy =q(f, 7). By Theorem 1.48(f,T) = Arf(q(f,T)). So finally

we haves(f, t) = [f] for an orientatior? on A such thals7(A)]=0. O

3. Epilogue: open problemson approximability by embeddings
3.1. The polyhedral analogue of Theorem 1.1

Theorem 1.1 is probably false for polyhedka(for n = 1 see [16, Example 1.6]). But
we conjecture that Theorem 1.1 is true for polyhekirandn # 2, if we replace (1.1.1) by
either of the following conditions (equivalent to (1.1.1) for the case of manifolds):

(1.1.2) There is a continuous equivariant map> $° = {+1, —1}.

(2.1.3) Any two distinct pointsc, y € K such thatfx = fy cannot exchange their
positions moving continously and preserving the conditiang 'y’ and ‘ fx =
fy'

(1.1.4) wi(p) =0e HY(A; Zy), wherep : A — A is the projection.

It is easy to see thatl.1.2) & (1.1.3) & (1.1.4) and(P) = (1.1.3). Also for general

position mapsf, (A) = (1.1.3).
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a_ b, c_ d e
dy |
(11- bl‘ Cll .dg _81
b21 C2 €2
a)
a_ b c. d e f
d, |
c1 .dg £ ,fl
I d3
al_ bl_
o ‘d4 €2
by c2 ds f
b)
Fig. 2.

Let us show that (1.1.3) is not true for some mgak — R of a graphK. Let H be
the ‘letter H’ and f : H — R the map defined in [18] (this map can be understood from
Fig. 2(a), where a general position mapH — R2, close tai o f, is shown). Denote some
points of H as on Fig. 2(a). Then the following sequence shows that (1.1.3) is not true:

aay, eei, didp, boby, coc1, epe, bb, did, cic, aia.

Analogously, letX be the ‘letterX’ and f: X — R the map defined in [18] (Fig. 2(b)).
Denote some points of as on Fig. 2(b). Then the following sequence shows that (1.1.3)
is not true:

aay, dds, cc1, ff1, dido, ezex, coc1, dads, bobi,
dsds, faof, bab, eze, dad, aia.

3.2. Approximability by embeddings of maps K — R?*

We can add to (1.1.2)—(1.1.4) the formally weaker conditions on approximability by
embeddings of any map: K — R?" (not necessarily of the form =i o f). Let us give
necessary definitions. In (3.2) we assume that in{A\Y; is replaced tg. For a polyhedron
K with a fixed triangulatiorf’ and a magg : K — R?" (such thag|, is an embedding for
eacho €T) let

EZU{GXTETXT|GQ‘E=VJ} and
fg=U{oxreTxT|goﬂgr=@}.

Clearly, K>/ = K/. Note thatK¢ is an equivariant retract of — A, thatK — K¢ is a
regular neighborhood ot in K, and hence QK — K8) = Mapv for some equivariant
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mapy:A — A (A C K8). Defineg: K¢ — $21 by g(x, y) = (gx — gv)/]gx — gV|.
We omit Z-coefficients (with the involutioi — (—1)"k) from (symmetric) cohomology
groups. Letk* = K /Z, andK*¢ = K¢ /Zs.

Let us construct a generalization of the van Kampen obstruetigh e HSZ”(f, K%)
for approximability by embeddings of a map K — R?" [16]. Take a general position
PL maph: K — R?*, sufficiently close tg. Fix an orientation oR?* and onz-simplices
of K. For any two disjointz-simpliceso, T € T, count an intersectioho N ht, where
the orientation ofso followed by that ofht agrees with that oR?" as +1, and—1
otherwise. Themw(g) is the class of the cocyclg, (g) (o, ) which counts the intersections
of ho andht algebraically in this fashion. Clearly, this definition is correct. Remark that
HZ'(K,K®) = H¥(K*, K*¢) for evenn. Sometimes it is useful to considgsu(f) €
HZ'(K, K8 7o) = HY (K*, K*¢; ).

The difference element(g) € H%*~1(K*$) for arbitrary PL mapg: K — R?* (not
necessarily an embedding) is definedaa®) = (g*: K*¢ — RPZ*~1)*(1), where 1e
H>~Y(RP?~1) is the generator. The geometric interpretation of this definition is as
follows [8]. Take a pointc € 2"~ that is regular forz. Fix an orientation ofs?*~* and
onn- and(n — 1)-simplices of7T". For any two disjointz- and(n — 1)-simpliceso, t € T
(Wheregr N go = ¥) let wy (g)(o, 7) be the degree df: o x  — 21 atx. Thenw(g)
is the class of the cocycle, (g) (o, t). Clearly, this definition is correct. Remark that the
choice ofx can be replaced here by the choice of a general positioninelpse tog and
such that & $2'~1 is a regular point of:.

(1.1.5) v(g) =0.

(1.1.6) There is an equivariant homotopic extenstor> $2'~1 of the mapg : K8 —

SZn—l.

(1.1.8) There exists an embeddigg K — R?" such thay g & 0N Ks.

(1.1.7) There exists an elemene H?'~1(K*) such thaw| g+ = w(g).

(1.1.7) There exists an embeddigg K — R?* such thatw ()| x+ = w(g).

Clearly, (1.1.5) is the first (and the only) obstruction to equivariant extensig)nISF —
§2=1 10 K, s0(1.1.5) < (1.1.6). For evem, it is easy to see that(g) € H'(K*, K*¢)
is the boundary of»(g), hence from the exact sequence of the p&i¥, K*$) it follows
that(1.1.5) < (1.1.7). Evidently,(1.1.6') = (1.1.6) and(1.1.7") = (1.1.7). Forn > 3 the
converse is true by [25]. Far= 1 the converse (and..1.6) = (A), (1.1.7) = (A)) is not
true by [16, Example 1.6].

The implicationgA) = (1.1.5), (A) = (1.1.6) and the converse far > 3 were proved
in [16]. Remark that in the proof [16, 84] it was used the property ¢hist a join on the
preimage o8, = S, * D/ _. This is not true foarbitrary general position PL map. But
the assumption does not affect the proof. In fact, the assumption holds before application of
Proposition 3.1 (whetf is linear on simplices of'), it is preserved under the modifications
from Section 3 (since the mapon each simplex is modified by an ambient isotopy), and so
the assumption holds before application of Proposition 4.1. In the proof of Proposition 4.1
the required property is preserved under modificationg fufr the same ambient isotopy
reason. Similar modification should be done in [19, Proof of Theorem 1.2], for detailed
account see [20].
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Note that there is a mistake in [16, Example 1.7], [15, Example 9.5.b] and [8,
Example 4.4.b]. It was asserted there that for examples from (3.1), the condition (1.1.6)
is true. But (1.1.6) is not true for these examples by (3.1)@rt6) = (1.1.4) below.

Sketch of the proof of (1.1.2) = (1.1.6). Recall that CIK — K/) = Map(y: A — A).
Represent-1, —1 andS?'~—2 as the north and the south poles and the equatS®?ofl.

Then we can extend the magd’ L §2n-2 c g1 gnd i > §0 ¢ s2-1 ‘linearly’ to an
equivariantmagk — $2'~1, and (1.1.6) follows.

Sketch of the proof of (1.1.6) = (1.1.4) for n = 1. We haveK/ = f~Y1)u f~1(-1),
S0A = AT LU A, If (1.1.4) does not hold, then there is an equivariant citle A. Itis
easy to see that then there is an equivariant cit¢le A™ such thatyC’ c C. If the map

c’ EA 1 e St can be extended to an equivariant n@pMap(y/ | : €' — C) — S1, then
@|¢ is null-homotopic and equivariant, which is impossible. So (1.1.6) does not hold.

It would be interesting to know if either of (1.1.5)—(1.3.implies (A) or (P). Interesting
partial cases of this problem atie= 1, g = f o i and/org monotone and/oK andg(K)
trees. The partial case, important for dynamical systems, is whefi, K andg(K) are
wedges ofp andg circles, respectively is represented by words ofg letters andR? is
replaced by an arbitrary 2-manifold [27]. E.Q.,

(Smale) The mapst v s — st v §1, defined bya — aba and b +— ab is
embeddable into torus but not into plane.

(Wada—Plykin) The magst v st v st — st v st v s, defined bya — aca™?,

b+ bab—1andc — b is embeddable into plane.

(Zhirov) The mapst v stv s1v st — s1v sty sty st defined by — ac,
b+ ad, c — bac andd — ¢ is embeddable into pretzel but not into
torus.

An interesting an perhaps easier analogue of these problems iitkenap analogue:
given a mapg : K u L — R™, under what conditions it can be approximated by mgps
with ¢/(K) N g’ (L) =¥ (cf. [13] and references there).Af Li L is ann-polyhedron ang
is PL, then analogous td.1.6) necessary condition can be introduced (foe= 2n—also
those analogous to (1.1.5) and (1.1.7), #oe= 2n and g(K U L) ¢ R¥?*~1—to (1.1.2)-
(1.1.4)). This condition is sufficient for higher-dimensional case [22, Theorem 1.3], but
the case(m,n) = (2,1) is unknown. For the cas&€ = L and g a composition of the
identification of the two copies and an embedding> R? see [17] and references there.

The manifold analogue of Theorem 1.1 (cf. the remark at the end of Section 1) is false
for n =1 [16, Example 1.6] (and Theorem 1.3 just does not make sense=fat). For
every mapf : I — S or f:1 — R and for every general position mgfx S — R, both
(A) and (P) hold [18]. For every general position mapSt — S, (P) is equivalent to (A)
and to the condition that the degree 6fis 0, +1 or —1 [18]. The condition thaff is in
general position is unnecessary for (A) in this assertion, but it is necessary for (P) (as the
example of the constant map shows). To understand the non-general position case, it would
be interesting to characterize magis— R andS* — $*, for which (P) holds.
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3.3. The polyhedral analogue of Theorem 1.3

Observe that for an orientable 2-surfaeand a general position map: K — RS, the
equivariant mapst — {+1, —1} are in 1-1 correspondence with the orientationson
In fact, for an orientatior?” on A define a map : A — {+1, —1} as follows. Take any
point (d1, d») € A and take the basigh1, by, a} of R® at the pointfdi = fda, formed
by the positive normal vectotis;, b, of the two sheets of K, corresponding t@/; and
do, and the vectowu parallel to the intesection of those sheets and directed along the
orientation ofA. If this basis is positive, then setds, d2) = —1. If it is negative, then set
t(d1, d2) = +1. Itis easy to see that the correspondehce t is 1-1. For an equivariant
mapr:Z—> {+1, —1} and a triple pointd of f with preimagesis, d», d3 define the
relation ‘<’ on {d1, dp, d3} by d; > d; if ©(d1,d2) =+1 andd; < d; if ©(dy,d2) = —1.
Evidently, the point is resolvable if and only if the relation<” is transitive.

The condition (1.3.1) can be reformulated so that it will be a strengthening of (1.1.2):

(1.3.2) There is a continuous equivariant mzam~—> {+1, —1} such that all triple

points of f are resolvable with respect to

We conjecture that in this form Theorem 1.3 is true even for polyhedra. We conjecture

that (1.3.1) and (1.3.2) can be reformulated in terms ofidheted cube.
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