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1. INTRODUCTION

We understand the resolution of the space X to be its representation as a continuous image of

some other space p:)? — X which possesses certain additional properties relative to.the oﬁgina.l.

This work is devoted to the study of the Dranishnikov resolution which represents any com-
pactum in the form of the image of Menger’s manifold with the same degree of the local and global
connectedness as the compactum itself, under a rather “soft” mapping. The Dranishnikov reso-
lution of any compactum is induced by means of an embedding of the compactum into a Hilbert
cube from the universal Dranishnikov resolution, i.e., the mapping of Menger’s compactum onto
the Hilbert cube dp: pm — @, which was constructed in [1] and which possesses a large number of
properties from which we shall point out the following:

(1) dyn is soft in the following senses: it is polyhedrally m-soft, (m,m — 2)-soft, (m — 1)-soft;

(2) d;;! stably preserves the AE (m)-compacta;

(3) dim M,, = m, and d,, is strictly m-universal.

As is known, the universal Dranishnikov resolution d,, is a kind of a bridge between the theory
of Menger manifolds [2] and the theory of Q-manifolds. Note that the resolution d,, has made it
possible to formulate and prove the triangulation and stability theorems in the category of Menger
manifolds due to its unique property to transfer the LC ™~l-compacta into u™-manifolds when a
preimage is taken.

The Dranishnikov resolution d,, is an important and useful tool in the arsenal of geometrical
topology. The original construction and the derivation of its properties are laborious enough to
rouse the desire to simplify them.

The construction of the Dranishnikov resolution is based on a certain many-valued retraction of
a ball onto a sphere. The main result of this article is to prove the fact that the type of softness of
the universal resolution d,,, coincides with the type of softness of this many-valued retraction. This
simplifies considerably the description of the envelope of softness of the Dranishnikov resolution
which is given below. All the known softness properties of the Dranishnikov resolution are derived
from one property, namely, its softness relative to the conservative pairs introduced below. The
approach that we propose makes it possible to reveal more softness properties of the Dranishnikov
resolution than were revealed by Dranishnikov himself [1).

= For the n-dimensional pair (Z, A), any partial lift ¢: A =+ S™ x S™ of the mapping ¥:Z — S™
relative to the projection pra: S™ x S® — S™ of the product of n-spheres by the second cofactor

1The work was performed under a partial financial support of the International J. Soros Fund (grant NFU 000) and
the Russian Foundation for Fundamental Research (project 93-011-1402).
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can be extended up to the global lift @: Z — S™ x S™ of the mapping ¥. However, in this case, the
preimage ¢~1(Diag) of the diagonal Diag = {(s,s) | s € §"} C S™ X S™ must, generally speaking,
increase. The n-conservative pairs are precisely the exceptions from this law.

Definition 1.1. The pair (Z, A) is said to be n-conservative if any partial lift p: 4 — S™ x §™
of the mapping ¥: Z — S™ relative to pr; can be extended up to the global lift ¢: Z — S™ x S™ of
the mapping v with the property of preserving the preimage of the diagonal (¢)~!(Diag) C A.

We also say that ¢ is a Diag-conservative extension of ¢ up to the lift of the mapping 1.

In Sec. 3 we describe a sufficiently large reserve on n-conservative pairs (Z, A), namely, either
dimA < (n—-2) and dimZ < n, or dimZ < (n — 1). More exotic examples of n-conservative
pairs are a compact bouquet of a countable number of similar pairs (I, dI") = (B",S™"1) (the
standard pair is H,), a single-point compactification of a countable number of nonintersecting pairs
(I*, "= x {0}) consisting of n-cubes and their faces (the standard pair is I,). Any pair (Z, A)
is n-conservative if A is an (n — 1)-dimensional ANR-compactum. A single-point compactification
of a countable number of nonintersecting pairs (I, dI™) (the standard pair is J") ‘an serve as an
example of an n-dimensional not n-conservative pair.

Definition 1.2. The mapping f: X — Y, which is soft relative to all n-dimensional n-conser-
vative pairs (Z, A) is said to be n-conservatively soft.

We shall use the concepts that we have introduced in order to formulate the fundamental

theorems.
Theorem 1.3. The resolution d,, ts m-conservatively soft.

Theorem 1.4. If the mapping f: X — Y is m-conservatively soft, then f satzsﬁes properties
(1), (2) and the following property:

(4) the preimage of any conservatively? closed equi-LC (m=1)_family {Y,} is an equi-LC™"1-
family.

The universal Dranishnikov resolution d,, plays, in the category of mappings, a part similar to
that played by the universal Menger compactum in the category of spaces. Therefore, by analogy
with spaces, certain questions naturally arise concerning the uniqueness and homogeneity of the
Dranishnikov resolution. The question concerning the uniqueness remains open, and as to the
homogeneity, here the seeming analogy with spaces proved to be violated. The nonhomogeneity of
d,, follows from our result concerning the softness kernel of the resolution and from the fact that
the resolution d,,, being an (m — 1)-soft mapping, is not, however, m-soft (= an absolute extensor
in the dimension m in the category of mappings). By virtue of the finite-dimensional Michael
theorem on selection [4], this means that the m-soft kernel Reg m(dm) = {m € M,, | at the point

m the system of fibers {d;!(q) | ¢ € @} of the mapping of d, has the property of equipotential
local (m — 1)-connectedness} does not coincide with M,,. The invariance of Reg,(d,) under
the fiberwise autohomeomorphisms and the following theorem imply the nonhomogeneity of the
resolution d,.

Theorem 1.5. The m-soft kernel Reg m(d.m) of the resolution d,, contains the Gg-set Cp,
which is everywhere dense in each of its fibers. Moreover, the restriction ¢y = dp, [ Cy is an
m-soft mapping of Cr, onto Q and a strictly m-universal mapping relative to Polish spaces.

In other words, Chigogidze’s resolution [5] is contained in Dranishnikov’s resolution as an ev-

erywhere dense G-set.

2This is how we call a family of sets whose any subfamily has a closed union [3].
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The construction of the Dranishnikov resolution given in Sec. 5, just as the original Dranishnikov
construction, essentially uses the difficult theorems from the theory of @Q-manifolds, namely, the
triangulation theorem and the characterization theorem. However, there is reason to hope that we
shall be able to do the same without the use of the theory of Q-manifolds.

2. PRINCIPAL CONCEPTS AND FACTS

The problem of extension of partially defined morphisms is of a general-categoric nature. In
the TOP category it is known as the problem of continuous extension of the partial mapping
Z & A -4 X to the whole space Z. The article by Dranishnikov-Dydak from the same volume
presents a rich theory (“extension theory”) devoted to this problem.

From this theory we shall mention the Kuratovskii relation 7 and the Hurewicz-Wallman theo-
rem. The spaces Z and X are related as 7 (Z7X) or X is an absolute extensor of Z (X € AE (Z))
if any partial mapping Z « A -2 X has a global extension ¢:Z = X, ¢ [4= £. Detailing this
definition for the case where the pair (Z, A) is fixed, we say that X € AE(Z, A). The classical
theorem [6] of the theory of dimension states that S® € AE (Z) <= dimZ < n.

In the category of mappings MAP y, which have a fixed range Y, the problem of extension of
morphisms is known as the problem of extension of a partial lift to the global lift and plays an
essential part in the theory of bundles. For the given mapping f: X — Y, the partial lift of the
mapping ¥:Z — Y is the mapping ¢: A — X which is defined on the closed subset A C Z and
which closes diagram (1) to the (square) commutative one:

A5 X
il s (1)
z %y

The partial lift (1) is extended to the global lift if there exists a global extension ¢: Z = X of the
mapping ¢ which is the lift of 1. Thus, the problem of lifting consists in the splitting of the square
commutative diagram (1) by the mapping ¢ into two triangular commutative diagrams.

Recall that the mapping f is said to be soft (locally soft) relative to the pair (Z, A) if any partial
lift ¢o: A = X of any mapping ¥:Z — Y can be extended to the global lifting.

The collection &(f) of all pairs (Z, A), which are soft with respect to f, will be called the
softness envelope of the mapping f.

Note that if |Y| = 1, then (Z, A) € 6(f) &= X € AE(Z, A). Thus, the problem of extension
of lifts is more general than the problem of extension of mappings.

Depending on the softness envelope &(f), mappings are divided into Serre bundles and Hurewicz
bundles, soft bundles and n-soft bundles, etc.

Definition 2.1. (a) If the softness envelope &(f) includes all pairs of the form (P x [0, 1], P X
{0}), where P is an arbitrary simplex, then f is a Serre bundle.

~  (b) If &(f) includes all pairs of the form (P x[0, 1], Px {0}), where P is a simplex of a dimension

not larger than n, then f is a Serre n-bundle.

(c) If &(f) includes all pairs of the form (Z x [0,1],Z x {0}), where Z is a compactum of
dimension not exceeding n, then f is a Hurewicz n-bundle.
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Along this line, we can give a more general definition. Suppose that the mapping f is soft
(locally soft) with respect to all pairs (Z, A) from a certain class €. Then f is ¢-soft (locally ¢-soft).
Then we encounter the concepts of (n, k)-soft mappings (€ = {(Z,A4) | dimZ < n, dim A < k}),
polyhedrally soft mappings (¢ = {(Z,A4) | Z, A are polyhedra, and dim Z < n}). The class of
(n, n)-soft mappings, or, briefly, n-soft mappings, will be denoted by &, and the class of locally
n-soft mappings by (£65,). -

If the mapping f of the compactum X into a point is n-soft (locally n-soft), then the compactum
X itself is called an absolute (neighborhood) extensor in the dimension n and is denoted by AE (n)
(ANE (n)). According to Kuratovskii’s theorem [7], A[N]E(n)-compacta are characterized by the
properties of (n —1)-connectedness (C*~!) and a local (n —1)-connectedness (LC"~1): X € AE (n)
(X € ANE(n)) <= X e C*'nLC™! (X e LC""!).

According to Michael’s theorem on the selection of many-valued mappings, the local n-softness
of the mapping f is equivalent to the equipotential local (n — 1)-connectedness of tl}e family of all
its fibers {f~1(y)} € equi-LC*~1.

The localization of the concept of the equi-LC ™-family is known as a homotopic regularity (see
[15]). In this work we do not deal with homologic regularity, and therefore, for brevity, we omit
the epithet “homotopic” and simply speak about n-regularity. In addition, we change the grading?
as compared to the preceding works for the sake of the better correspondence of the gradings of
softness and regularity.

The mapping f: X — Y is n-regular at the point z € X if, for any neighborhood U(z), there
exist neighborhoods V (z) and W (f(z)) such that any mapping ¢: S* - f~1(y)NV (z),y € W(f(z))
(otherwise called a k-spheroid) for k < n, defined on the boundary of the ball B¥*! can be extended
to the mapping @: B¥t! — f~1(y)NU(z) (or, to put it otherwise, is contracted by a (k + 1)-film).

We denote the set of points of n-regularity of the mapping f by Reg .(f) and call it an n-softness

kernel of the mapping f.
Softness kernels serve as a measure of closeness of mappings to the class of soft mappings. The

local n-softness of the mapping f: X — Y is equivalent to the equality Reg.(f) =

Obviously, the 0-softness kernel coincides with the points of openess of a mapping, the kernels
form a decreasing filtration. Here are several more facts.

Proposition 2.2. The kernel Reg ,(h) of the composition h of the mapping go f contains the
intersection Reg n(f) N f~1(Reg n(9)). If f is an n-soft mapping, then Reg.(h) = f~!(Reg.(9)).

Proposition 2.3. The kernel Rega41(f) of any locally n-soft mapping f: X — Y with LC"-
fibers contains the preimage f~1(Y') of a certain Gs-set Y', which is dense in Y.

Thus, the kernel Reg ,+1(f) of the mapping described in Proposition 2.3 contains an everywhere
dense subset. We shall not use this interesting fact in our work. It should only be pointed out that
the Baire theorem on categories plays an essential part in its proof.

We shall need the description of softness kernels in terms of the lifts of mappings. It is known
that the n-softness of the mapping f is equivalent to the fact that the standard pairs Jx = (Jk i)
“for k < n belong to the softness envelope of f: X — Y.

Proposition 2.4. Let ar be a compactifying point Ji, k < n. Then zo € Reg,(f) <

3In this work, the n-regularity corresponds to the (n — 1)-regularity in [15].
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any partial lift o:J7 — X of any mapping ¢¥:Jt — Y with p(ar) = zo can be ertended to the
neighborhood lift 1. ’

Let us consider the behavior of softness kernels for fiberwise products. Recall that the fiberwise
product W = X; x, Z of the compacta X and Z with respect to the mappings f: X — Y and
g9:Z — Y is the subset {(z,2) | f(z) = g(2)} C X x Z. The projections of X x Z onto Z and onto
X generate the mappings f:W — Z and ¢": W — X, which will be called fiberwise projections
parallel to f and g respectively, and will be denoted by f' || f, ¢’ || g.

Many properties of mappings are inherited by parallel projections. Thus, for instance, the
softness envelope &(f) is contained in &(f’). We can establish as easily that (¢')"'Rega(f) C
Reg .(f'). Now if g was an open mapping, then Reg(f') = (¢') " (Regn(f))-

In connection with the formulation and the proof of Theorem 1.5 we introduce the following

concept. .
Definition 2.5. An amply n-soft mapping for n > 0 is an n-soft mapping f: X — Y whose
softness kernel Reg ,4+1(f) contains a Gs-set C such that :

(i) the restriction of f to C is an (n + 1)-soft mapping onto Y;
(ii) the intersection of C with any fiber f~!(y) is an everywhere dense set in f~!(y).
We say that the Gs-set C realizes the ample n-softness of the mapping f if properties (i), (ii)

are satisfied for it.
Proposition 2.8. (a) The composition of amply n-soft mappings is an ample n-soft mapping.

(b) Suppose that f: X — Y is an amply n-soft mapping and g:Z — Y is a mapping such that
f~Y(y) C Reg n+1(f) always implies g~1(y) C Rego(g). Then f' is also an amply n-soft mapping.

In the category G-TOP we encounter the problem of the extension of equivariant mappings
and the problem of extension of equivariant partial lifts to global equivariant lifts. Then there
appear the concepts of G-C-soft mappings, where € is a certain class of G-pairs. Thus, for instance,
there appear G-m-conservatively soft mappings (€ = {(Z, A) | the pair ((Z/G),(A/G)) is m-
conservatively soft}); G-(n, k)-soft mappings (¢ = {(Z, A) | dim (Z/G) < n, dim (A/G) < k}),
polyhedrally G-n-soft mappings (€ = {(Z,A) | Z/G, A/G are polyhedra, and dim (Z/G) < n}).

If the mapping of the G-space X into a point is G-n-soft, then we shall call X an equivariant
absolute extensor in the dimension n and denote it by X € G-AE (n). In [8] the characterization of
G-AE (n)-spaces was obtained in terms of the topological properties of families of H-fixed points
XH = {g-z=zforall g € H}: X € G-AE(n) <= {X¥ | H is a closed subgroup of G} €
equi-LC™*"1 N C™"1 and X € G-AE(0).

3. PROPERTY OF n-CONSERVATIVENESS

Since, as was mentioned in Introduction, all softness properties of the Dranishnikov resolution
d, are consequences of its softness relative to m-dimensional m-conservative pairs, the properties of
m-conservative pairs and those of m-conservative soft mappings must be more thoroughly studied.

First of all, we shall construct a more convenient (for our purposes) than in (1, 9] an n-

- conservatively soft many-valued retraction of the (n + 1)-ball B**! onto its boundary S™.

Proposition 3.1. There ezist an ANR -compactum Dy,,,, an n-conservatively soft mapping
Pn+1: Dny1 = Bt a locally trivial bundle qu41: Dpyy — S™, and an embedding in41: Sp = Dpy1
such that
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(1) gn41 is a retraction, gni1 0 ing1 = Id sn;

(2) the preimage p;l,(s) coincides with inyy(s) for alls € S;

(3) if the equalities pay1(d) = pnas1(d’) and gny1(d) = gn41(d’) are satisfied for the points
d,d' € Dpyy, thend=4d'.

Remark. (1) The formula gn4;0 p;}_l(b), b € B™t!, defines the many-valued retraction of B™+}
onto Sy; (2) property (3) is equivalent to the fact that the diagonal product pnp41 X gni1: Dny1 =
A x JA is an embedding. _

Proof. Let A, be a subset {(t;z) = (t;Zo,.-.,Zn) | 22 = 1, 2o < t} in [-1,1] x S™. The
mapping vn: Ap — [—1,1], defined by the relation v,(z,t) =t, can be interpreted as the projection
of half the cylinder [-1,1] x S™, resulting from its intersection with the half-space t — zo > 0,
onto the generatrix [—1,1). Note that the preimage v;1(t) = A4, N (¢ x R**!) coincides with
the n-sphere S™ from which an open ball with center at the point 8 = (1;...,0,0) is cut out;

v7l(-1) = - =a=(-1;...,0,0). *
We denote by R,,s € S, any turn of the S™ sphere which transfers a into s. The parametric
family B, = Id [_,1) X R, of the transformations of the cylinder [-1,1] x S®, which is, in general,

discontinuous, generates the continuous, in the Hausdorff metric, mapping
s € S" = R,(A,) € exp([~-1,1] x S™).

Let us consider the compactum B, = {R,(A4a) X 8| s € S*} lying in [-1,1] x S™ x §™. Since
R,(A,) is homeomorphic to A, for all s € S™ and continuously depends on s, it follows that the
projection of B, onto the third factor is a locally trivial bundle with a fiber A,. Therefore B, is
the ANR -compactum.

We denote by m,: B, — [—1,1] x S™ the projection onto the first and third factors and by
0n: B, — S™ the projection onto the second factor. It is easy to find out that 8, is a locally trivial
bundle with the fiber A,. As to m,, we shall prove the following important statement.

Proposition 3.2. The softness envelope &(m,) of the mapping n, coincides with all n-con-
servative pairs.

Proof. It should be noted, first of all, that Diag and the antidiagonal —Diag can be trans-
ferred into each other by means of a fiberwise autohomeomorphism relative to pra. Therefore,
when we replace Diag by —Diag in Definition 1.1, we get the same class of spaces.

Suppose that =, is soft with respect to the pair (Z, A) and let p: A — S™ x S™ be a lift of the
mapping ¥:Z — S™ relative to the projection pr3:S™ x S™ — S*, pra(s;,s2) = sa2. Since A is
a zero-set, there exists a numerical function §: Z — [-1,1] with A = £-1(1). Then the diagonal
mapping € | A and ¢ gives a mapping ¢ from A into B,, which is a lift of the diagonal mapping
¥1: Z = [—1,1] x S™ of the mappings £ and 1. By the hypothesis, there exists a lift ¢: Z — B,,
a0 @ =1, @ | A = ¢1. Then the composition of ¢ with the projection x of the compactum B,
onto the second and third factors defines the required Diag-conservative extension of the mapping

«p which is the lift of 3. , _

Conversely, suppose that we are given an n-conservative pair (Z, A) and a partial lift o: A — B,
of the mapping ¥;: Z — [~1,1] X S™. Then the composition xo¢: A — B, — S™ X S™ is a partial
lift of the mapping £ = pr o ¥: Z — S™ which, by the hypothesis, can be —Diag-conservatively
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extended to the lift (: Z — S™ x S™ relative to pra. It is clear that { is the diagonal product of a

certain mapping (1: Z — S™ by &, and (1(z) # —€(z) for 2 ¢ A.

Before constructing the global lift ¢: Z — B, of the mapping ¥, let us note the following: for
—1 < t < 1, the relation r¢(zo,...,Za) = (pe(z0), k21, k29, ..., kz,), where py(c) =t for o > ¢,
pi(o) = o for o < t, k2 = (1 — (pe(20))?)/(1 — z3), correctly defines the retraction r¢: S™\8 —
{(zo,-..,Zn) € S™| z¢ < t} from the deleted sphere onto the set which is homeomorphic to v;1(¢).

Then the required global lift ¢: Z — B, of the mapping ¥ can be constructed according to the
following rule: RE

if ¥(z) = (1,5), then $(2) = (1,{(2)) € Ba;

if ¥(2) = (¢,s) and ¢ < 1, then $(2) = (t, Be(z) (r:(C1(2))), €(2)) € B,
where the mapping r¢: S™\S — v;1(t) = {(z0,...,2Zn) € S™ | 2o < t} which is a retraction, is
defined by the relation r¢(zo,...,Za) = (pe(z0), kZ1,kZ2,...,kZa), k* = (1 = (pe(z0))?)/(1 - z3),
and pe:[-1,1) = [-1,¢] is a retraction. ‘e

Since v;1(1) = S*, it follows that B, contains {1} x.5™"xS™. Therefore, by virtue of the theorem
on the addition of ANRs [10, p. 49], Dpy1 = Bn U ({1} x Sp x B"*1) is an ANR-compactum. The
projection of Dn4; onto the first and third factors [—1, 1] x B*+1 gives the surjection #': Dpyq —
[~1,1] x S® U {1} x B™*! = B"*1 whose image B™*! is homeomorphic to Bpy;. Let x”: Br+l
B™t! be a homeomorphism, constant on the boundary, i.e., #”(—1,s) = s for all s € S™.

Now, as the required mappings, we set the following: p,4+ is the composition n#” o 7': Dy yq —
Brtl oy Bntl: g1 is the projection gny1: Dpp1 — S™, gns1(t, s1,82) = 81, of the compactum
Dy41 onto the second factor, the embedding i,41: S™ = Dy is defined by the relation in41(s) =
(-1, s,s). Properties (1) and (3) of Proposition 3.1 are obvious and property (2) follows from the
relations (7")~1(s) = (-1, s), (7')"1(=1,s) = (=1,s,5), (Pns+1)"1(s) = (~1,5,8) = inp1(s)-

We shall show that the mapping pn4+; is n-conservatively soft. To this end, we pay attention
to the fact that by virtue of the construction, x’: D1 — [—1,1] x §* U {1} x B! = B™+1 over
{1} x B™*1 is n-soft and over [—1, 1] X S™ coincides with 7, and is n-conservatively soft. Lemma
3.3(a) completes this part of the proof and, hence, the proof of the whole Proposition 3.1.

Lemma 3.3. Suppose that Y = U{Y; |< t}, f; is a restriction of f: X =Y to X; = f~Y(Y;).
If

(a) t = 2, fi is an n-conservatively soft mapping and f, is an n-soft mapping, then f is n-
conservatively soft;

(b) t > 2, fi are n-conservatively soft mappings, and the restriction of f; toY; fori # j isa
homeomorphism, then the mapping f is n-conservatively soft.

The following proposition demonstrates the local character of the property of n-conservativeness.

Proposition 3.4. Let dimZ = k < 0o. The pair (Z, A) is n-conservative if and only if any
partial lift : A = S™ X S™ of the mapping ¥: A — S™ relative to pr,: S™ x S® — S™ is Diag-
conservatively extended to the mapping @: AU N(Ag) = S™ x S™, which is the lift of the mapping

=, where N(Ag) is a certain closed neighborhood of Ag = ¢~!(Diag) in Z. -

We must only prove the sufficiency. Restricting the projection pr; to W = (S™ x S")\Diag,
we get a locally trivial bundle n: W — S™ with fibers which are homeomorphic to R". According
to Michael finite-dimensional selection theorem, the mapping 7 is k-soft.
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It follows from the hypothesis that ¢ transfers F = [AUN (A4p)]\Int N (Ao) into W, and therefore
there is a lift ¢ in the commutative diagram '

F 5 ow
il I
Z\IntN(4A)) % s°
The combining of two mappings ¢ and ¢ é.long their common domain of definition gives the required

lift of the mapping ¥ which is, at the same time, a Diag-conservative extension of ¢.
To conclude this section, we shall give sufficiently extensive conditions that guarantee the n-

conservativeness of pairs.

Proposition 3.5. Letdim A < (n —1). Each of the conditions (a)—(8) that follow guarantees
the n-conservativeness of the pair (Z, A): ‘y

(a) for any compactum Ag C A there ezists a neighborhood U, Ag C U C A, such that for
any neighborhood V, Ag C V C U the complement V\ Ag has zero (n — 1)-dimensional cohomologies
H™Y(V\ Ao, Z) = 0 of Alezandroff-Cech;

(B) for any compactum Ag C A, there ezists a neighborhood U, Ag C U C A, such that for any
neighborhood V,Ag C V C U any mapping from V\Aq into an (n — 1)-sphere is homotopic to a
constant mapping;

(7) for any compactum Ag C A there ezists a neighborhood F', F' C Z, Ay C Int F', such that

for any other closed neighborhood F, F C F', Ag C Int F, and any mapping f: (FN A)\ 4y — S™~!
there ezists an eztension f: F\Ao — S™1, f | (FN A)\ Ao = f;

(8) for any compactum Ag C A there ezists a neighborhood F', F' C Z, Ag C Int F', such that
for any other closed neighborhood F, F C F', Ag C Int F, and any mapping f: FN A — B™ with
F71(0) = Ao there ezists an eztension f: F — B™ such that f | FNA = f, f~1(0) = A,.

Proof.  Thescheme of the proof of Proposition 3.5 is the following: (a) = (8) = (v) = (8) =
n-conservativeness of the pair (Z, A).

(¢) = (B). This implication follows from the fact that dim (V\4p) < (n — 1) and
H""1(V\Ap,Z) = 0 entail the homotopy of any mapping from V\Aq into the sphere S™! to

a constant mapping.
(B) = (7). Suppose that the neighborhood U, A D U > Ao, is such that any mapping

f:V\Ap — S™! is homotopic to the constant (f =~ const) mapping for all V, U D V D A;. We
take the compactum F’ with the condition Ag C F'N A C U as the required closed neighborhood
Ao.

Suppose now that we are given the neighborhood F of the compactum Ap into F' and the
mapping f: (F N A)\Ao = S™"!. We extend f up to the mapping {: V\Ay = S™! to a certain
neighborhood V of the compactum A in U. Since ¢ is homotopic to a constant mapping by the

« hypothesis, it follows that f =~ const too. Hence it follows, according to Borsuk’s theorem on the

extension of homotopies, that there exists an extension f: F\Ao = S™! of the mapping f.
() = (). We denote a radial retraction by r: B*\{0} — S™~!, and the mapping p(b) = ||b||
by p: B — [0, 1].
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Suppose that we have to extend the mapping. f: FN A — B™ with f~1(0) = Ao to the mapping

f F o B, fI FNA=f, f"(O) Ao. To do this, we shall consider the compositions

=ro fi(FNA\A4¢ — B"\{0} > S* ! and y =po f: FN A — [0,1]. By virtue of (7), ¢ can

be extended to the mapping (: F\Ap = S™~!. The function ¥ can be extended to the function

P F > [0, 1] with the preservation of the preimage of zero by virtue of the following refinement of
Urysohn’s theorem.

Lemma 3.8. Suppose that we are given an arbitrary partial mapping Z <> A %5 [0,1]. Then
there ezists an eztension $:Z — [0,1], @ [ A = ¢, such that $~1(0) = ©~1(0).

Proof. The required extension ¢ is defined by the relation ¢ = 1 - (1 — ¢) - £, where
¥:Z — [0,1] is an arbitrary extension of ¢ to Z and the function §:Z — [0, 1] is such that

()= -
Let $~1(0) = ¥~1(0) for the function %: F — [0,1]. Then the required extension f: F — B"
can be defined by the relation f(z) = 0 if z € Ao; and f(2) = (((2), ¥(2)) if z € F\Ao.

(6) = the n-conservativeness of the pair (Z,A). Suppose that we are given a partial lift
@: A— S™ x S™ of the mapping ¥: Z — S™ relative to pra. If we denote {(t,s) € S®* x S*|s€ S™
by W, and the inner product ¢ -s > 0}, then the restriction of pry to W is a locally trivial bundle
7: W — S™ with a fiber which is homeomorphic to B™.

Since dim A < n, there exists a closed neighborhood F O A such that ¢/ = ¥ | E 2 const.
Therefore [11] the induced bundle (¥')*(7): Wy, X¢# E — E, where W, Xy E = {((¢,¥(e€)),€) |
e € E, t-y(e) >0}, is a trivial bundle with a fiber B™.

Let h: B X E — Wy, xy E be a fiberwise homeomorphism which transfers fiberwise the
section 0 X E into the section Diagpr, Xy E, i.e., praoh = pr, and h(0,e) = ((¥(e), ¥(e)), e) for
alle€ E.

We denote by Ag the preimage ¢~!Diag C A. Let the neighborhood Z D F' D Ay satisfy (4).
Then the neighborhood F of the compactum Ag lying in E N F’ also satisfies (4). We assume,
without loss of generality, that ¢(F) C W. Let us consider the mapping

FIFNAZS W, xy E2S B* x F 254 B,

It is obvious that f~1(0) = Ag. By virtue of (), there exists its extension f: F — B™, (f)~1(0) =
Ao, which generates the lift $(z) = h((f(2),2)), z € F, of the mapping ¥ | F with the properties
@1 A=, (@) 1(Diag) C A. The proof of the conservativeness of the pair (Z, A) is completed by
a reference to Proposition 3.4.

It follows from Proposition 3.5(7) that we have proved that if the dimension of A is not
larger than (n — 2) or dim (Z) < n, then the pair (Z, A) is n-conservative. As a corollary of
Proposition 3.5(a) we obtain the n-conservativeness of the standard pairs H, and I,. Since the
“ (n - 1)-dimensional ANR-compactum A satisfies condition (a), any compactum Z, that contains
A, generates the n-conservative pair (Z,‘A).
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4. PROOF OF THEOREM 1.4

Since the m-conservatively soft mapping f is soft with respect to any one of the pairs enumerated
at the end of Sec. 3, it is polyhedrally m-soft, (m, m — 2)-soft, and (m — 1)-soft.

We shall show that the softness of the mapping f with respect to the standard pair H, implies
that it stably preserves the AE (n)-compacta and it also preserves property (4) from Introduction.
Since an m-conservatively soft mapping is soft with respect to H,,, Theorem 1.4 will be completely
proved. .

Definition 4.1. (a) The mapping f:X = Y preserves the AE (n)-compacta (ANE (n)-com-
pacta) if f~!(Yo) € AE(n) (f~1(Yo) € ANE (n)) for all AE (n)-compacta (ANE (n)-compacta)

YoCY.
(b) The mapping f: X — Y stably preserves the AE (n)-compacta (ANE (n)-compacta) if the

product f X Idg: X x @ = Y x Q of this mapping by the identity mapping of the Hilbert cube Q
preserves the AE (n)-compacta (ANE (n)-compacta). <

It is easy to find out that the stable preservation of the AE (n)-compacta by the mapping f
is equivalent to the fact that the fiberwise product of X by the arbitrary AE (n)-compactum W
relative to f and of the arbitrary mapping g:W — Y is an AE (n)-compactum.

Proposition 4.2. If the softness envelope S(f) of the mapping f: X — Y contains the stan-
dard pairs H; = (H¥,H) for i < n, then f~1 stably preserves the AE (n)-compacta.

Proof.  Since when we pass from the mapping f to the projection f': Xy x, W — W, which is
parallel to it, the softness envelope increases, it suffices to prove in the proposition that X € AE (n)
in the case where Y € AE (n).

Let us assume the contrary, i.e., X ¢ AE(n) = C*~1NLC™!. Since it is easy to establish that
X € C1, it follows that X ¢ LC™~!. We assume, without loss of generality, that X ¢ LC"~2.
Since Y € AE (H;) and since H; belong to the softness envelope &(f) for i < n, we can easily find
that X € AE(H;) for all ¢ < n. It is stated that the latter inclusions contradict the assumption
that X ¢ LC™1, A

It is known that the space V € LC ™! <= for any point v € V, for any € > 0 there exists § > 0
such that any i-spheroid £: S* — N(v,8), i < n, which passes through the point v (i.e., v € £(SY)),
is contracted by an (i + 1)-film ¢: B! — N(v,¢).

Since X ¢ LC™"!, there exist a point zg € X and a sequence of (n—1)-spheroids £: S*~! — X,
which pass through the point zg, z¢ € {k(S”‘l), which converges to this point but does not admit
of the contracted of the spheroids & by the n-films (4: B®* — X with the preservation of the
convergence lim (¢ (B") = zo. Using the sequence {£;}, we can easily construct the partial mapping

HY « H; Sx which, by virtue of X € AE(H,), has a global extension. But this precisely
means that almost all £ admit of the contradiction (x: B® — X with the condition lim {x(B") = z,.
We have obtained a contradiction.

= It is clear that when the hypothesis of Proposition 4.2 is satisfied, the mapping f does not
preserve, in the general case, the equi-LC "~!-families of the compacta. We shall give an important
case where the preservation nevertheless takes place (the proofis similar to that of Proposition 4.2).
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Proposition 4.3. If the softness envelope &(f) of the mapping f: X — Y contains the stan-
dard pairs H; = (H¥,H) for i < n, and the equi-LC *~-family {Y,} of compacta from Y is
conservatively closed (and this is equivalent to the property that for any point y € Y there ezxists a
neighborhood O(y) such that O(y) NY, # @ <> y € Y, (see also footnote 1), then the preimage

{f~1(Ya)} of this family possesses the equi-LC ™! -property.

5. CONSTRUCTING THE m-CONSERVATIVE DRANISHNIKOV RESOLUTION (PROOF
OF THEOREM 1.3)

Proposition 5.1. Suppose that the polyhedron K of dimension k, the natural number m, which
is smaller than k, and the number € > 0 are fized. Then there ezist a triangulation T of the
polyhedron K, an ANR -compactum D™ with a certain metric p on it, an m-conservatively soft

nonezpanding mapping fm: D™ — K, and an e-mapping gm: D™ — K(m),

Proof. Wechoose the triangulation 7 of the polyhedron K from the condition 2-cal (7)-(k?) <
g, where we denote by cal (7) the largest diameter of the simplex of this triangulation. Let us
consider the arbitrary (n + 1)-simplex A € K(®+1) n > m, which is homeomorphic to the ball
B™t1l, Therefore everything that we have established in Proposition 3.1 for the pair .(B"“,S")
is also valid for the pair (A,3A). In particular, there exist an ANR-compactum D41, an n-
conservatively soft mapping pa+1: Dnt1 — A, a locally trivial bundle gny1: Dpy; — 94, and an
isometric embedding in41: @A — D4 such that

(2) Pn+1 O%nt1 = Gny1 O Iny1 = ldaa;
(b) the diagonal product pp41 X gnt1: Dn1 = A X 3A is an embedding.

Naturally, the compactum D,4; and all mappings depend on the simplex A. If we disjunctively
combine all these ANR-compacta over all (n + 1)-simpleces A € K™*! and then carry out the
identification with respect to the images i"+?(9A) of the boundaries of the simpleces A, then we get

the ANR -compactum D, 41, the embedding i ;: K™ - D,,,, the mapping Pry1:Dpyy = K1)
and ¢3,,: Dp,; — K", for which the following properties are valid:

(@) gny1 09041 = Prya O ingr = Id g
(B) the diagonal product pi,, x ¢2,,: D1, ; — K(+1) x K(n) is an embedding;
(7) ¢r41[(PP41) "1 (A)] C DA for all simpleces A of the triangulation T.

The restriction of p?,, to the complete preimage (p%,,)~'(A), A € K(*+1), coincides with pp41
¢a.nd, consequently, is n-conservative; now the restriction of p%,, to (p2,,) YK () is a homeomor-
phism. Using Lemma 3.3(b), we come to the conclusion that p?,, is n-conservative.

The constructions given above can be complemented by the operation of fiberwise multiplication
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to the Pascal “triangle.”

K
ot
-1 % pe(k-1)
nt ot N
k 2 q:—ﬁ
pt2 B, pE? 2o g(e-2)
nt ol Prla N
T 1 iy T N
o gm . gt ot ‘e
pp+t 2y ppit = ppt [ 0 2 gma)
P:‘ T P:‘_l T Pg-z T P::-H T \
Chy QL"_; m qi".g Im+2 Im+1 (m)
Dy — k-1 k—2 cee T ma1 — K

To this end, we set the compactum DJ;} for t — s+ 2 > 2 equal to the fiberwise product of the
compacta D, and D! already constructed relative to the mappings gj,, and p{™*
-1 WE pae1
Dyt =B Dt
P¢+1l l *lf P:-l
ql
= D

We denote the projections parallel to the mappings g¢f,, and pj~! by g7} and p{;{. We shall
now introduce into consideration the compositions of the mappings along the legs of the Pascal

“triangle”:
k 2 -1
Pr Py P
fm:D™ = Dp -2 DpH 2y, & D"*+2 __, 23 Di 1 2, K,

gm: D™ 2 pp B pp B Ty pm ey pe(m),

Proposition 5.2. The mapping fn, is m-conservatively soft.

Proof. It is easy to find out that the composition of m-conservatively soft mappings as well
as the projection of a fiberwise product, which is parallel to an m-conservatively soft mapping, is
an m-conservatively soft mapping. Hence follows an m-conservative softness of f,.

The polyhedron D™ is naturally homeomorphic to the set {a = (ax, @x-1,---,am+1) € Dk'l
xDpg | q.‘ Ya) = p,::f(a;_l), i=k,...,m+ 2}, and the values of the mappings fn, and g¢m
at the point a are equal to p’,:'l (ax) and g 41 (am41) respectively. This remark and (7) yield the

following important property of the mappings f, and gn.
(8) gm © £31(A) c A(™) for all simpleces A of the triangulation 7.
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We define the pseudometric on D™ by the relation

k k
pla,a) = > d(pi Y (ae),pi ™ (ad)) + Y. d(gi'(ar) gt (ah)),
=m+1 =m+1

where a = (ag, ak-1,-..,8m4+1) and a’ = (a}, a}_;,--.,0,,,,) are points from D™ and d is a metric
on K. It follows from (B) that if p(a,a’) = 0, then a = a’. Therefore p is a metric on D™. It
can be immediately established that the topology 7, on D™, generated by p, is not weaker than
the original topology 7. From this and from the compactness of D™ it follows that the metric p is
consistent with the topology r.

Since fm(a) = p,’:‘l (ax), the mapping fn is a nonexpanding mapping.

We shall show that g, is an e-mapping. To do this, we must establish the inequality p(a,a’) < ¢
if g 1(am+1) and gy (ar,41) coincide. It is easy to get the following estimate from the inclusion
(8)- )

Lemma 5.3. Letb,b' € D™, k>t > m.

If d(gi ™ (be), gt~ (64)) < 8, then d(p(gs™" (be), Pt ™" (b})) < &+ 2 cal (7).

Using repeatedly this lemma for m 4+ 1,...,t, we find for a,a’ € D™ that

d(?tt+1 (at+1), ‘I:+1(a:+1)) = d(P:+1(at+l)aP:+1(a:+1)) < 2-cal(r)- (¢t —m).
Consequently,
pla,a') <2-cal(r)-(1+2+... 4+ (k—m)) < 2-cal(r) - (k?) < e.

In order to prove D™ € ANR, we represent D™ in the form of a finite union of sets of the form
Dy = [Dky Dk=ts-- .1 Am) = {6 € Dm | ¢ (a:) € Aiy for k > i > m, pf~Y(ax) € Ak},

where ¢ = {Ag D Ag-1 D ... D Ap} is a decreasing sequence of simpleces of the triangulation
7 which satisfy the inequalities dim A; < i. Since all ¢; [ (gi-1)~*(A;-1) are trivial bundles with
certain fibers F; € ANR, it is easy to establish that D, is homeomorphic to the product A,, of the
ANR -compacta F; for which A;_; # Ay, i.e,, D, € ANR. Since the intersection of a finite number
of D, is a set of the same form (and, hence, is an ANR), it follows, according to the theorem on
the union of ANR s that D™ € ANR..

We have thus completed the proof of Proposition 5.1.

Most likely, the compactum D™ is a polyhedron [9, p. 124]. However, we cannot consider this
fact to be strictly established. Now if we do not make an effort to prove it, then we have to use
the laborious theorems from the theory of Q-manifolds [12].

Edwards’ theorem. If the compactum X is an ANR, then the product of X by the Hilbert
cube Q is a Q-manifold.

Chapman’s theorem. Any Q-manifold X is a product of a certain polyhedron P by Q.

" Proposition 5.4. For any polyhedron K, any metric p on K x Q, and the number ¢ >0 there
ezist :

(1) a polyhedroh P and a metricd on P x Q,

(2) an m-dimensional polyhedron L and a number §,
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(3) mappings a: P X Q —+ K x Q and 3: P x Q — L such that

(4) a is an m-conservatively soft mapping,

(5) B is a §-mapping (i.e., diam B~1(%) < §),

(6) a transfers any set A C P x Q with a diameter smaller than § into a set with a diameter

smaller than €.
Proof. We represent the cube Q = IV x Q' so that the natural projection p: K x Q —

K x IV = K is an (¢/8)-mapping.

We choose the triangulation 7 of the polyhedron K for which there exist an ANR -compactum
D™, an m-conservatively soft nonexpanding mapping fm: D™ — Kj, and an (¢/8)-mapping gm:
D™+ K™ =1

On the Q-manifold D™ x Q we consider a metric equal to the product of the metric on D™ and
the metric on Q relative to which @ has a diameter smaller than /8. According to Chapman's
theorem, there exists a polyhedron P whose product by Q is homeomorphic to D™ x Q. Let
h:Px @Q — D™ x Q be the corresponding homeomorphism and the metric d on P x Q be that
relative to which A is an isometry.

We set the mapping « equal to the composition P x @ —h—) D™ x@Q fﬂd K; x Q' and 8 equal

to the composition P x Q Ay pmox Q 2 pm Iy K = L.

Obviously, « satisfies property (4). Taking § = 3 -¢/8, we verify the other properties (5), (6):
diam ({gm o pr o h)~!(*)) = diam ((gm o pr)~1(*)) < diam ((gm)~1(*)) +2-6/8 < 3-¢/8 = 4.

Let AC P x Q@ and diam A < 4. Then diam (B) < 5+ 2-¢/8 < 5-¢/8, where B = pr(hA).
Then diam (@A) < diam (fmB X Q) <5-¢/8+2-¢/8<e.

The commutative diagrams (2;) for¢t =1,2,3,...

S d i (21)

generate a mapping of limits of the inverse spectra f: l}gl {X¢, 6.} —)Ligx {Y;, 0¢}. Generally speak-

ing, the n-softness (n-conservative softness, etc.) of all mappings f;, o, 8; does not imply the
corresponding softness of the mapping f. However, if all (2;) diagrams are, say, n-soft in the sense
of [13], then f is also n-soft. Since it is necessary to track more carefully the softness properties
when we pass to the limits of inverse spectra, we introduce the following definition of softness
relative to a pair.

Definition 5.5. We say that the commutative diagram (2;) is soft relative to the pair (Z, A)
if the characteristic mapping of this diagram g¢: X¢41 = (Yit1)e: X X¢ = Z; into the fiberwise
product Z;, defined by the relation g¢(z) = (fi+1(2),0:(z)) € Z,, is soft relative to the same pair

~(Z,A).

A commutative diagram is said to be n-conservatively soft (n-soft, etc.) if the characteristic
mapping is n-conservatively soft (n-soft, eté.).

Let us generalize the result of [13] to a more general situation.
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Proposition 5.8. If all commutative diagrams (2,) are soft relative to the pair (Z, A) and the
mapping f, is soft relative to (Z, A), then the limit mapping f:lim{X,, 6} — ljg_l{Y,,c‘,} is also
soft relative to (Z, A).

Proposition 5.7. Suppose that the mapping 6, is represented in the form of the composition

0” 0’ . .
Xiy1 — Z; — X, and the compactum X4, is a fiberwise product of the compacts Z; and Yiy

relative to the mappings hy = fy 0 0, and oy, with 67 || o, fiy1 || he- If all mappings f, 64, 0, are
soft relative to the pair (Z, A) for allt > 1, then the limit mapping f is soft relative to the same

pair.
The Dranishnikov resolution is obtained as a limit mapping generated by the commutative

diagrams (3;),
K41 X Q By KixQ .
e 4 de - . ‘ (31)

It+1 "‘, It

which satisfy Proposition 5.5, where K, is a polyhedron, I is a cube of dimension ¢, and o, is a

projection along the last factor I.

We shall successively construct these diagrams (3;). For t = 1, we take the segment I! as the
polyhedrona K, set the mapping e;: K; x @ — I* equal to the projection along Q, and fix the
metric p; on K X Q.

Suppose that we have already constructed the mappings e,: K, XQ — I, 0,: K, 41 XQ — K, xQ
and the metrics p, on K,xQ for all s < t. We choose the number £ = ¢, from the following condition:
diam [8,0...06;_1(A)] < 27 for all s < t and all A C K, x Q with diam A < &;. For the number ¢,
the polyhedron K}, and the metric p; on K; X  we choose the mappings a;: P, x @ — K¢ x Q and
Be: P x Q — Ly, dim Ly < m, as well as the metric p},; on P, xQ, the number §;4; > 0 proposed in
Proposition 5.4. We denote by Wi, the fiberwise product of the compactum (P x Q) x T, where
T is a (2m + 1)-cube I>™+!, by the cube I**! relative to the composition

hePox QxT 2 P x Q2% Ky x Q =4 I and o: '+ — I

We denote by v¢41: Wy = Pox Q x T and egq1: Weqqg — I'*! the projections which are parallel to o,
and h; respectively. It is obvious that the fiberwise product Wy, coincides with P x @ xT x I (i.e.,
with the product of polyhedron K41 = P X T x I by Q) and the mapping +; is a projection along
I and, consequently, nonexpandable, if we consider on K4y X Q the product of the metric pj,, by
the metric on I. Consequently, if e, was an m-conservatively soft mapping, then the mappings A
and eg4 (since e¢4 || Ae) and the composition 6 = h; 0 v:41 are m-conservatively soft. It follows
immediately that the characteristic mapping g¢: Ki41 X Q@ = (I*+1),, x,, (K¢ X Q) of the diagram
(3:) is m-conservatively soft.
According to Proposition 5.6, the limit mapping

dm: Mpy =l:L!11 {Kg X Q, 0¢} —)l‘ii_n {It,a'g} = Q,

generated by the diagrams D}, is m-conservatively soft.
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Since the estimate

diam (8,0 -0 8;)(ri7h) () < 27¢ for all s < ¢,
is valid for the mapping

re K x QI8 B x QxT 2 P xQ 24 I,

onto the m-dimensional polyhedron L, the limit spectrum M, admits of arbitrarily small mappings
into m-dimensional polyhedra. Therefore dim M,, < m.

Since the projections 8, coincide with the compositions v o pr o oy, and the projection pr is
along the cube T of a sufficiently large dimension, it is easy to derive a strong m-universality of
the resolution dp,, i.e., for any € > 0 and any mapping ¢: Z — M,, there exists an embedding

@: Z = M, with properties (p,9) < &, podm = @odn.

.
A

6. INTERMEDIATE SOFTNESS AND RELATIONSHIPS BETWEEN DIFFERENT
CLASSES OF MAPPINGS

The class of n-conservatively soft mappings lies between the classes of n- and (n — 1)-soft
mappings. Therefore mappings of this class are also called (n — 1/2)-soft and are denoted by
S(n-1/2)-

The Dranishnikov resolution d, is an example of (n — 1/2)-soft but not an n-soft mapping.
There exists a 0-soft mapping of AE (1)-compacta which do not have sections over the arcs. Thus,
the classes of (n —1/2)- and (n — 1)-soft mappings are identical. How large is the difference between
them? We pointed out earlier that the softness envelope of an (n — 1/2)-soft mapping contained
pairs I for k < n. What does this property entail?

Definition 6.1. We say that the mapping f: X — Y lifts small homotopies of n-polyhedra to
small homotopies if, for any € > 0, there exists § > 0 such that any homotopy ¥: P x I — Y with
a diameter smaller than § of the polyhedron P of a dimension not exceeding n, partially lifted to
the mapping ¢: P x {0} = X, diam ¢ < 4 is lifted to the homotopy @: P x I = X with diam ¢ < ¢.

Proposition 6.2. The mapping f: X — Y which is an (n — 1)-bundle, lifts small homotopies
of (n — 1)-polyhedra to small homotopies <=> the softness envelope &(f) contains the pairs Iy for
k<n.

Proposition 6.3. If the softness envelope &(f) of the mapping f: X — Y between the ANE (1)-
compacta contains the pairs Iy for k < n, and all fibers f~1(y) € AE (n— 1), then f is (n —1)-soft.

Proof. Having assumed the contrary (f is not (n — 1)-soft), we get a family of fibers without
the property equi-LC ™2, In turn, this means that

(1) there exists a convergent sequence yx — yo € Y;

(2) there exists zo € f~1(yo) and there exists a sequence of (n—2)-spheroids ¢x: S*2 = f~1(yi)
which converge to the point zg, but do not admit of the contraction of the spheroids @i by (m —1)-
films (g: B! — f~1(yx) with the preservation of the convergence lim (x(B™"!) = z,.

Since Y € LCPY, there are paths s;:[0,1] = Y, sk(0) = yo, sk(1) = yk, which convétge to
vo- The small homotopies ®;:5""2 x [0,1] 23 [0,1] 25 Y are lifted to the small homotopies
$r: 5" x [0,1] =+ X, fo B = &p, B 1 572 x {1} = @&, and, consequently, lim(Im &;) = zo.
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All (n — 2)-spheroids ¥ = & | S"2 x {0} lie in the fiber f~!(yo) and converge to zo. Since
f~1(yo) € LC™2, there exist (n — 1)-films Pr: B*1 — f~1(yo), which contract ¥ and converge
to zgp.

Combining the homotopies ) and the (n—1)-films ¥ along their common domain of definition,
we get m-films &:B"! — X, & | S™% = ¢k, Im (f 0 &) = Im sk, converging to zo. Now
we contract sx along itself to the point yx leaving it fixed. In this way it is easy to construct
contractions H¥: B"! + Y, Hf = fo&, HF = {yx}, HF [ ™2 = fopx, Im (HF) C Im s, which
also converge to the point yo. We lift these small homotopies of an (n — 1)-ball to homotopies
HE:B™1 5 X, fo HF = HF, HF | "% = ¢4, converging to zo. As a result we have (n — 1)-
films HE: B*! — f~Y(y), HF 1 S*~2 = ¢y, which contract (n — 2)-spheroids ¢ and converge
to the point zo. We have thus obtained a contradiction with the assumption that we have made.
Consequently, f is (n — 1)-soft. _ ‘

Since the fibers of the (n — 1/2)-soft mapping are AE (n)-compacta, the proposjtion we have
proved implies the inclusions of the following classes of mappings between AE (1)-compacta:

Sn-1/2 C {f | Ix € 6(f) for k < n, f~(y) € AE (n)} C Sn_1.

Let us show that between the second and the third class of mappings there is a class of mappings
which stably preserve the AE (n)-compacta.

Proposition 6.4. If the softness envelope &(f) of the mapping f: X — Y between ANE (1)-
compacta contains standard pairs I; for i < n, and all fibers f~1(y) € AE(n), then f stably

preserves the AE (n)-compacta.
Proof. Just as in Proposition 5.2, it suffices to establish that X € ANE (n) follows from

Y € AE (n).

Assuming the contrary, we get a point zo € X, a sequence of {n — 1)-spheroids ¢x: S*™! = X,
which converge to the point z¢ but do not admit of the contraction of the spheroids ¢ by m-films
(x: B® — X with the preservation of the convergence lim (x(B") = zo.

Since Y € LC™! N C"-!, the spheroids f o ¢; are contracted by n-films ¥;: B" - Y,
Yk [ S™1 = f o g, ¥x(0) = f(z0), such that we have the convergence lim yx(B™) = f(zo).

We use the fact that I, € &(f) and cover the small homotopies, defined by n-films 1y, by small
homotopies $: S™1 x [0, 1] — X such that fo (s, t) = P&(t-s) and ¥ [ S*! x {1} = 4. It is
clear that (n — 1)-spheroid & = ¥ [ S~ x {0} is contained in the fiber f~1(yo), where yo = f(zo)
and lim §(S™"1) = z,.

Since f~1(yo) € AE (n), by the hypothesis, the spheroids £ are contracted by the films &:B™ =
£~ (yo) with the preservation of the convergence lim x(B™) = z,.

Combining the homotopy ¥ and the n-film €k along their common domain of definition, we
get n-films (p: B™ = X, (& | S™ ! = @y, lim (x(B™) = z¢. This contradicts the assumption that

« we have made. Consequently, X € ANE (n).

Proposition 8.5. If the mapping f: X — Y between the ANE (1)-compacta stably preserves
the AE (n)-compacta for n > 2 and I; € S(f) for i < n, then f is an (n — 1)-soft mapping.

Proof. By virtue of Proposition 6.4, the mapping f is (n — 2)-soft and, consequently, open.
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Assuming the contrary (f is not (n — 1)-soft), we have {f~1(y)} ¢ equ1— LC™2, but {f~1(y)} €
equi-LC =3, This means that

(3) there exists a convergent sequence yx — yo € Y;

(4) there exists zo € f~!(yo) and there exists a sequence of (n—2)-spheroids ¢g: S*~2 — f~ 1(yk)
which converge to the point zo but do not admit of contracting the spheroids ¢ by (n — 1)-ﬁlms
Ce: B™! = f~1(yi) with the preservation of the convergence lim {x(B""!) = z,.

Since Y € LCY, there are paths s:[0,1] = Y, s£(0) = yo, sk(1) = yk, convergent to yo. Since
small homotopies of (n —2)-polyhedra are covered by small homotopies and f~1(yo) € AE (n), there
exist (n — 1)-films ¢5: B! = X, ¥ [ S™2 = ¢k, Yi(t- o) = sk(t), where 0 <t < 1, 0 € S™2,
lim ¥ (B™™1) = z. Clearly, ¥x(0) = zo.

Let us consider the monotone sequence ax — 1, ap = 0, on the mterval [0,1]). It is easy to
construct a mapping s: [0, 1] = Y with the properties
(5) s(azk) = yo, s(azk+1) = Y4 for all k > 0;

(6) the images of the intervals [agk, a2k+1] and [azk+1, 02k+2] under the mapping s coincide with
the image Im (sg4+1) of the path sg4y.

By the hypothesis, the fiberwise product X x,[0,1] = (s*)(X) is AE(n). Let x¢:[-1,1} —= [0, 1]
be a piecewise-linear monotone mapping with xx(—1) = azk-2, Xxk(0) = aak—1, xx(1) = az.
If we represent the sphere S™~! as a suspension £5"~2, then the relation &:EZS""2 — (s*)(X),
&([t, o)) = (xk(t), ¥e((1=12)-0)) € (s*)(X), where —1 < t < 1,0 € S™~?, correctly defines (n—1)-
spheroids with the convergence property lim £¢(S™~1) = (1, z) € (s*)(X). Since (s*)(X) € AE (n),
the spheroids & are contracted by n-films £: B® = EB™1 — (5%)(X), & [ S™! = &, with the
property lim fk(B”) = (1, zg).

Our immediate aim is the contraction of (n — 2)-spheroids ¢ by small (n — 1)-cycles lying in
the fiber f~!(yx). With the use of the following lemmas this must lead to the existence of small
(n — 1)-films that contract .

Lemma 6.8 [9, p. 78]. Suppose that the compactum X € LC*3 = AE(n - 2), n > 4, and
the open setsU D [V] DV D (W] D W are such that V is homotopically (n — 3)-trivially contained
in U and the composition ¥: S 2 L3 W 3 V of (n — 2)-spheroid @ and the embedding W C V
induces a zero homomorphism in Alezandroff-Cech (n — 1)-homologies. Then ¢ is contracted by
(n—1)-film $: B*1 5V, ¢ | S22 =4,

Lemma 8.7. If the compacta B and C are such that BUC = B"™, B contains the upper
hemisphere S7™! = £4(S™?) and C contains the lower hemisphere S*™! = £_(S"~2), then the
embedding S*~! C BN C induces a zero homomorphism in Alezandroff-Cech (n — 1)-homologies.

Let B’ = {(z,t) € (s*)(X) [ t < azk1}, C' = {(2,t) € (s*)(X) [t 2 azr1}, B = (&)1(B) C
£B™1, C = (€&)~!(C’) C £B™"1. We use Lemma 6.7: there exists an (n — 1)-chain z on BNC
whose boundary 9z is a generatrix e € Ha—1(S™?). Then z; = (£).(z) € Ha1(f~1(yx)) has a
boundary dz; = (¢&).(€), i-e., z; bounds. (cpk) (e). It is clear that (n — 1)-chains z; are small as

k — oo.
Lemma 6.6 implies the possibility of contraction of the (n — 2)-spheroids ¢g: S™2 — f~1(yx)

&
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by small (n — 1)-films @x: B*~! = f~1(y).

What is the condition that guarantees the belonging I, € &(f), i.e., the covering of small
homotopies by small ones? We write the answer to this question as an increasing sequence of
classes of mappings between ANE (1)-compacta

£6, C {(n — 1)-Hurewicz bundles} C {(n — 1)-Serre bundles}

c{f| e &(f), k <n}.

The last embedding is a finite-dimensional analog of the well-known theorem {14, p. 230].
Consequently, it remains to consider only the first inclusion.

Proposition 6.8. If f: X — Y is a locally n-soft mapping, n > 1, then it is the Hurewicz
(n — 1)-bundle. _

Proof. Let us consider the many-valued mapping ®:Y — F(X), ®(y) = j"’l(y), which is
continuous in the Hausdorff metric pg and has an equi-LC ™ -family of images {®(y) = f~!(y)}.
In this situation Michael’s theorem [4] on the approximation of selections is valid: there exists a
number 8 > 0 such that for any mapping ¢:Z - Y, dim Z < n, and for any B-selection r': Z — X
of the mapping ®oy (i.e., r'(z) € N(®(p(2)), B) for all z € Z), whose restriction to the compactum
A C Z is a selection, there exists a selection r: Z — X of the mapping ® oy whose restriction to the
compactum A coincides with v/, r [ A = r' [ A. Suppose that Z is a compactum with dim Z < m;
and g: Z x {0} = X is a partial lift of the homotopy G: Z x [0,1] = X. Using the number 8 > 0,
we find a number & > 0 such that py(f~(y), f~1(y")) < B for all p(y,y’) < 4. Using & > 0, we find
6 > 0: p(G(2,1),G(z,t)) <éforall [t-¢t'|<@and z € Z.

Let us consider the composition ¢: Z x [0,60] 2= Z x {0} =+ X of the projection pr onto the
factor Z and g. It is clear that ¢ is a B-selection for ® o . Since dim (Z x [0, 8]) < n, there exists

a selection G: Z x [0, 6] = X of the mapping & o ¢ which coincides with g on Z x {0}. This means
that G [ Z x {0} =g, foG = G. In the same way we construct a global lift G: Z x [0,6] & X of

the homotopy G.

To conclude the section, we shall give the proof of the theorem on the division of locally n-soft
mappings by UV ®-mappings announced in [15].

Theorem 8.9. Suppose that the locally (n + 1)-soft mapping h: A — C can be decomposed

into the composition A % B 4o of the UV *-mapping g and the mapping f. Then f is a locally
(n + 1)-soft mapping.

Proof. Since h is open, the mapping f is also open.

Next we note that all UV "-mappings preserve the class of A[N]E(n + 1)-compacta and all
fibers of h are contained in this class. Therefore the fibers f~1(c) = g(h~!(c) € A[N]E(n + 1).
Consequently, it remains to establish the equipotential property LC™ for the system of fibers
{f )l ceC}. :

For this purpose, we fix the point § € B and the number € and seek § > 0, for which any

partial mapping B**! « S* £ f-l(c) N N(by,d), k < n, can be extended to the mapping

@: B¥1 5 f~1(c) N N(bo,€). First of all, using &, we find a number ¢ = o(e) > 0 such that if
p(a,a’) < o, then p(g(a),g(a’)) < €/10. Therefore, if (¢, %) < o, then (9o ¢,g0 ¥) < €/10.

-
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Then we use the property equi-LC™ of the system of fibers {A~!(c)} and choose a number
v = v(s) > 0 such that any mapping e: P — N(h~!(c), v) of the (n + 1)-dimensional polyhedron
P into the v-neighborhood of any fiber A~! can be approximated by the mapping é: P — h~1(c),
(é,€) < ¢/3 into a fiber which coincides with e on the preimage e~!(h~1(c)) [16]. Thus, Im () C
N(Im (e),20/3) C N(Im (e), o).

Since g is a mapping of compacta, there exists a number v/ > 0 such that p(b,d’) < v’ always
implies g~!(8') C N(g~'(),v). Thus, if diam D < v'/2 and p(b,D) < v'/2, then g=*(D) C
N(g™1(6), v)- |

Let us use the property of an approximative lifting of the UV ®-mappings g. According to this
property, there exists a number 8 = B(v’) > 0 such that any partial mapping B*¥*! Sk XA,
diam (g o x) < B can be extended to the mapping x: B¥+! — A, % | S*¥ = x, diam (g o ) < v'/6.

And this is all. Now we take 3/4 as § > 0. Suppose that the mapping ¢: Sk - :f"l ()N N (bo, 6)
is defined. Since g:g~1f~1(c) = f~!(c) € UV ™ is a UV "-mapping between ANE (n+ 1)-compacta,
there exists a lift ¢:S¥ — g=1f~1(c) = h~1(c) of the mapping ¢ such that (go @,¢) < §/10 and
there exists (8/10)-homotopy H between ¢ and go . '

Since we have diam (g o @) < diam ¢ + 2(8/10) < B for the partial mapping B*+! > Sk LN A,
@ can be extended to the mapping ¥: B¥t1 = A, ¢ | §* = 3, diam (go ) < v/'/6.

By virtue of the choice of v/, we have Im ¢ C N(¢g~1f~1(c),v) = N(h~1(c),v). Therefore there
exists an approximation ¥: B*1 — A=1(c), (¥, %) < o/3 and ¥ (b) = ¥(b) for all b € ¥1(h71(c)).
Since @(S*) C h~1(c), it follows that ¢ = ¥ on S*.

Since diam (go %) < diam go %+ 2¢/10 < v'/6 +¢€/10, the image of go ¢: B¥+1 — f=1(c) lies in
the e-neighborhood of the point bg (since § +28/10+ v//6 +¢/5 < €). The mapping g o, together
with the (3/10)-homotopy H, which connects g o ¥ | S* and ¢, defines the required extension
@: B¥1 5 f-1(c) N N (bo,€).

We denote by M(f) the cylinder for the mapping f: X — Y and by d(f): M(f) — I the natural
projection of M(f) onto the interval I = [0, 1]. It is known that this operation considerably improves
the softness properties of mappings.

Proposition 6.10. Let f be a mapping of AE (m)-compacta. Then f is a UV ™ .mapping
<= d(f) is an m-soft mapping.

Therefore, if f is a piecewise-linear mapping of AE (m)-polyhedra, then d(f) becomes an m-
soft piecewise-linear mapping. In all specific examples, this improves the softness properties up
to the (m + 1/2)-softness. Thus, for instance, the natural simplicial UV ™~!-mapping g: (S™ x
I)u (B™+! x {0}) = Con S™ generates, by means of the operation d(g), half of the mapping
Um41:U31([0,1]) = [0,1] which possesses stronger properties than m-softness. Therefore the
following question seems to be interesting: does this improvement of properties occur automatically?

Question. Is it true that d(f) € Spn41/2 for any simplicial UV ™-mapping f of AE(m)-
compacta?

A more general

Question. Is it true that the simplicial m-soft mapping f with AE (m)-fibers is (m +1/2)-soft?
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7. APPLICATIONS OF THE DRANISHNIKOV RESOLUTION

Dranishnikov’s resolution provides one more technique for constructing Edwards’ resolution

[18].
Proposition 7.1. Any compactum X with the cohomological dimension ¢ —dim zX < m can

be covered by the CE -mapping p: X 2 X withdim X < m.

Proof. We represent the compactum X, lying in @, with a natural convex metnc, as the
intersection X = NP; x Q; of the decreasing sequence of cylinders F; X Q;, where the polyhedron
P;, defined in the triangulation 7;, lies in the cube C IMi and Q is the product of C I™i and the
Hilbert cube Q;. Without loss of generality, we can assume that

(1) mesh ; < §;, diam Q; < 4;, 3di41 < &; < 2-% and N(z,26) C P x Q; forall z € X.

We denote the preimage (dm+1)~*(X) by X™+! and the preimage (dm4+1) " (Pr+1 X Qk+1) by

Nj. Since ¢ —dim zX < m, the double width a™*1(X) = 0. Consequently, for any k, the mapping

dm4+1: X™H — X can be approximated by the mapping fi: X™+1 — P,E"), (dm+1, fi) < 8k (since
dim X™*! < (m+1)). Since P,f") € ANR, it follows that f can be extended to some neighborhood

Xm™+1in Mm™+1, Without loss of generality, we can assume that f can be extended to the preimage

(dm+1) " (Pe41 X Qr41) = Ny up to the mapping fi: Np — P,Sm)-

Xm+1 — N N, — XMl oy N,
 h ddmi 2t  fa 2 ddms st

The (m + 1)-invertibility of d,,+, implies the existence of its section sg: P,S'"H) = (dms1)”1 X

(Pes1 X Qiyr) over PI™HY),

We denote by X the limit of the inverse spectrum (S)

l.i_@ { . (’") 9 P("‘) LN P(m)}

where gi is the composition P,E ) P('"“) - (dng1) ! (P("‘“)) fi- P("') Since (S) consists
of m-dimensional polyhedra, it follows that dim X < m.

Proposition 7.2. If % = (a,,a2,83,...) € X, a; € P,-(m), then there ezxists a limit z = lim(a;)
which belongs to X. Moreover, z = lim dm41(b;), where b; = s;(a;).

Proof. It is obvious that f;(b;) = ai-1.

Therefore p(ai, ai—1) = p(dm+1bi, ai—1) = p(dm+1bi, fi-18:) < ;-1 < 2. Consequently, there
exist equal limits of the sequence {a;}, {dm+15:}, which belong to X by virtue of property (1) (see
Proposition 7.1).

Thus, the mapping p:,? -+ X, p(£) = lima; € X, is correctly defined and continuous. Let us
show that the preimage p~!(z) of any point z is nonempty and coincides with the inverse limit of
the spectrum (S;)

{... 2 g{™ 2, g™ &, plmy
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where R; is the intersection of the neighborhood N(z,24;) being contracted and the polyhedron

P,-("'). It suffices to show that any point £ = {a;} € p~!(z) is a thread of the spectrum (Sz).
Indeed, it follows from Proposition 7.2 that £ = lima; = limdm4+1(di). Therefore p(a;,z) <
(@i, aiy1) + p(@ig1, Gig2) + ... L 6+ 6i1 + ... < 26;.

It follows from property (1) that R; is nonempty, and, consequently, p is a surjective mapping.

The mapping g;: R; — Ri_ is the composition of the mappings R; < T; =% d,',j,,1 (N(z,68i-1)) fig

R;_;, where T; is the intersection of N(z,24;) with the polyhedron P,-(m“) . By virtue of the con-
tractibility of the convex neighborhoods N(z,24;) and the general position theorem, the embedding
R; — T; is homotopically trivial up to the dimension m. Therefore g;: R; —+ R;-; also possesses
this property. Consequently, p~!(z) =l'il_n (Sz) is a UV ®°-compactum, and p is a CE-mapping.

In the proof of Proposition 7.1 we can use any (m + 1)-invertible mapping of an (m + 1)-
dimensional compactum on a Hilbert cube instead of the resolution dm4;. The .question arises
whether we can use the complete collection of properties of the resolution dm41 and prove a stronger
result?

Problem (of an LC ™-resolution). Any one of the LC™-compacta X of the cohomological
dimension < m can be covered by the LC™-compactum X of dimension < m by means of the
CE-mapping p:}? - X7

As another application of the resolution d,, we shall give the result concerning the Menger
manifolds with the action of a group.

Proposition 7.3. Suppose that G is a compact Lie group, B, is a unit ball of the linear
irreducible orthogonal representation p of the group G, Q = [ p(B,)™ x Q is an equivariant Hilbert
cube. Then there ezists a G-compactum M,, and a G-surjection §,,:M,, = Q with the following
properties:

(2) 6, is an equivariantly m-conservatively soft, and, consequently, it is polyhedrally G-m-soft,
G-(m,m — 2)-soft, and G-(m — 1)-soft;

(3) dim (M, /G) = m, &, is a strictly G-m-universal mapping;

(4) ém stably preserves G-AE (m)-compacta, in particular, My, € G-AE (m).

Proof. Let us consider the orbit projection #:Q — Q/G onto the space of orbits, which,
as follows from Torunczyk’s criterion, is the Hilbert cube Q. As the G-compactum M, we take
the fiberwise product Qy X4,, M,, of the cube Q by the Menger compactum M,, relative to = and
the Dranishnikov resolution dm: My, — Q, as the G-mapping é,,: M,, = Q we take the projection
which is parallel to d,,. The technique of constructing the G-compactum M,, and the G-mapping
8 implies properties (2) and (3).

Since the resolution d,, is soft relative to the pairs H;, i < m, the projection é,:M,, = Q,
which is parallel to dn,, is also soft relative to H;. For the same reason, 6, || dp, is a G-(m — 1)-soft
mapping and M, € G-AE (m - 1).

The family of H-fixed points {Qf | H is a closed subgroup G} possesses the equi-LC™"!

property, and it is easy to verify that it is conservatively closed. By virtue of Proposition 4.3,
this family passes into the family {(M,.)? = (6m)~1(Q¥) | H is a closed subgroup of G} with the
equi-LC ™~ property. From the characterization theorem [8] “X € G-AE(m) <= {X¥ |H is a
closed subgroup of G} € equi-LC ™! and X € G-AE (0)” it follows that M,, € G-AE (m). We can
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establish by analogy the stable preservation by 8 of G-AE (m)-compacta.
In the G-TOP category, the G-compactum M, plays the part of an equivariant analog of
Menger’s universal compactum ™. Therefore a natural question arises as to the uniqueness of

these objects.
Problem. Suppose that G is a compact Lie group, X and Y are G-AE (m)-compacts which

have m-dimensional spaces of orbits X/G and Y/G, and are also strictly G-m-universal. Is it true

that X and Y are equimorphic?
We conclude this section by proving, Theorem 1.5. We have to find the set C C M, which

realizes the ample (m —1)-softness of the resolution d,, and the restriction of d,, on which is strongly
m-universal in the class of Polish spaces. Proposition 2.3 that we proved earlier guarantees only
the existence of dense Gs-sets C C Regmdn,. However, the general arguments are not sufficient
for establishing the density of C in the fibers of d,n, and we must analyze the construction of the

resolution in greater detail.
Recall that the Dranishnikov resolution d,, was constructed with the a.ld of, the mappings

Un: An = [=1,1}, Tt Bn = [=1,1) X S, Pn41: Dag1 = B, p2 1o DB o KD, £ D 5 K.
Every successive mapping from this series was constructed with the aid of the operations of a
fiberwise multiplication and the composition of mappings. Since it is easy to observe immediately
the ample (n — 1)-softness of the mappings vn, n, Pat1, Phyy (say, Rega(vn) = An\B), we can use
Proposition 2.5 in order to establish the ample (m — 1)-softness of fin: D, = K. It is obvious that
the mapping a: P x Q — K x Q from Proposition 5.4 is also amply (m — 1)-soft.

It is more difficult to establish the ample (m — 1)-softness of the resolution d,,. Recall that the
resolution was constructed as a limit mapping generated by the commutative diagrams (3;) (see
Sec. 5). It is easy to establish immediately the ample softness of these diagrams in the following

sense.
Definition 7.4. The commutative diagram (4;)

Xt41 2y X,
S d g2 (4¢)
Yiip = Y

is said to be amply n-soft if the characteristic mapping g¢: Xi41 = (Yi41)o, Xz, Xt of this diagram
is amply n-soft.

We say that the set C' C X4 realizes the ample n-softness of the diagram (4) if C C X4
realizes the ample n-softness of the mapping g; (see Sec. 2).

In order to find the properties of ample n-softness when passing to the limit of inverse spectra,
we shall prove the following important statement.

Proposition 7.5. Suppose that the commutative diagrams (4,), t > 1, generate the limit map-
ping f:im{X¢, 0;} - lim{Y;, 01}. If, for allt, the diagrams (4;) are amply n-soft, the mappings o,

are (n + 1)-soft, and the mapping f is amply n-soft, then

« (5) all the other mappings fi and o, are also amply n-soft;

(6) Regns1f D {(z1,22,...) | Ze41 € Regpny1(0t), ¢ € Regnyy1(ft) forallt > 1}; in add:tzon,
there exist Gs-sets Cy C X¢ such that, for allt > 1,
(7) Ct realizes the ample n-softness of the mapping f;
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(8) Ct =bc,,,, Y2 = fi(Ct) and the commutative diagram (5¢)

]
Cina 2 Ct

fert d 3 (5?)
Yin =% Yi

is (n + 1)-soft;

(9) Ct41 C Regnt1(6:), Ce C Regnyi(fe)-

Proof. Properties (5) and (6) follow from Propositions 2.4 and 2.6.

Let the sets C, C X,, which satisfy properties (7)-(9), be constructed for all s < ¢t. We apply
Proposition 2.6 to the fiberwise product Z; = (Y¢41)s, X X¢ and find that

(10) the Gs-set C = (0)~1(C}) coincides with the fiberwise product (Yi41)o: X st Ct, lies in
Reg n+1(0}) C Z;, and realizes the ample n-softness of the mapping fI: Z; — Yi44 (in particular,

the set C lies in Regn41(f}) and is dense in the fibers f!).
Suppose that the Gs-set X¢,; C X4 realizes the ample n-softness of the characteristic mapping

ge: Xey1 — Z; of the diagram (4;). Then we take the intersection Xy, , N (9:)"Y(C) as the set

Ci41 C Xy1. It is clear that Cyyy realizes the ample n-softness of the mapping g | (9:)~1(C), and,
consequently, the commutative diagram (5¢) is (n + 1)-soft. This completes the proof of property
(8).

By virtue of (10), C41 C (9¢) "}(Reg n41fi N Reg n4107) N Reg ny19:. Then property (9) easily
follows from Proposition 2.2 (on the composition of kernels). It remains to establish the density of
Ct41 in the fibers of the mapping fi41. But this is the fact since fiy1 [ Cey1 = f{ 0 g¢ [ Ci41, the
set C is dense in the fibers of the mapping f/, and Xty is dense in the fibers of the mapping g;.

Let us now establish the ample (m — 1)-softness of the Dranishnikov resolution d,,. We apply
Proposition 7.5 to the amply (m — 1)-soft diagrams (3,) and obtain the commutative diagrams (6,)
which satisfy properties (7)-(9),

8
Cin =5 Ci

eesat 4 dee (6¢)
2y gt
They generate the mapping e:C = lim{Cy, 6; [} — lim{I", o} which coincides with the restriction

dm | C. Since C, was a dense Gs-subset, according to the Baire theorem on the category, C is also
a dense Gg-subset in X. Since the embedding

Reg m(dm) D {(z1,%2,...) | Te41 € Regm(8:), z¢ € Reg m(er)}

holds by virtue of (6), the set C lies in Reg ;(dm).
«  Since C} realizes the ample (m — 1)-softness of e; and the diagrams (6,) are m-soft, C is dense

in the fibers of the resolution d,,. :
Before proving the strong m-universality of the restriction d,, [ C in the class of Polish spaces

(i.e., in the class of Gs-subsets of the Hilbert cube), we shall give the necessary definitions.
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Definition 7.8. The mapping f: X — Y between Polish spaces is said to be
(a) m-complete if, for any mapping ¥: Z — Y of the m-dimensional Polish space Z, there exists

a closed embedding ¢: Z — X for which fop = ¢;

(b) strongly m-universal if, for any open covering w € cov X and for any mapping g: Z — X of

the m-dimensional Polish space Z, there exists a closed embedding h: Z — X, which is w-close to
g, such that fog= foh. .

Proposition 7.7. If all the spaces in m-soft commutative diagrams (5¢), t = 1,2,..., are

Polish, all mappings are m-soft, and the characteristic mappings g¢: Cey1 — Z; of these diagrams
are m-complete, then the limit mapping f | C is strongly m-universal.

This fact can be establish by analogy [5, Lemma 3]. Since the commutative diagrams satisfy

the conditions of this proposition, the proof of Theorem 1.5 is complete.

N oo

10.
11.
12.
13.

14.

15.

16.

17.

18.
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