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Abstract. We prove the following generalization of a theorem of Ferry concerning selections of
strongly regular multivalued maps onto the class of paracompact spaceb: et~ (Z, p) be a

map of a paracompact spakento a metric spacé€Z, p) whose value (x) are complete subspaces

of Z and absolute extensors (AE), for evary X. Suppose thab can be represented ds=T"o ¢,
wherep: X — Y is a continuous singlevalued mapXfonto some finite-dimensional paracompact
spaceY andI': Y — (Z, p) is a strongly regular map. Then for every closed suldset X and
every selectiom: A — Z of the map®|4: A — Z, there exists an extensién X — Z of r such
thatr is a selection of the mag. We also prove a local version of this theorem.
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1. Introduction

A classical theorem of Michael [3] asserts that every lower semicontinuous (Isc)
map®: X — Z of an(n + 1)-dimensional paracompact spaxento a complete
metric spaceZ has a continuous selection, provided that all vald€s) are n-
connected closed subsets and that the colledtidfx) | x € X} of all values of
® is an equi-LC family (we quote here the global version from [3]). The problem
of finding purely topological conditions for the collecti¢® (x) | x € X} which
would guarantee the existence of selectionsbah the case wherX is infinite-
dimensional, has been around ever since the theory of selections was originated
in 1956. It remains unsolved and there are good reasons for the absence of such a
solution [4].

In 1974 Pixley [6] generalized a construction of Borsuk and obtained an ex-
ample of a lower semicontinuous map of the Hilbert cube into itself, all values
of which are cubes (of various dimensions), the collection of all values has the
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property of uniform local absolute extendability (UE-LAE), but the map has no
selection. It is natural in such a situation to strengthen the type of continuity of the
map® and preserve good topological properties of the collediib(x) | x € X}.
Such an approach was already suggested by Pixley [6]. Namely, he proposed to
either strengthen the UE-LAE property to the uniform Lefschetz property (UE-
Lf), or to consider continuous instead of semicontinuous maps. The first approach
was carried out for compact metric spaces and continuous maps by Moiseev [5].

In the present paper we make the first step in the other direction. Namely, we
strengthen semicontinuity @b not only to continuity but to strong regular conti-
nuity of the map®, which roughly speaking, means that for close paints’ € X,
their values® (x) and ®(x") are homotopy equivalent and the homotopies do not
significantly change the distance. This property plays a significant role in one of the
main results of Ferry [1], to the effect that every strongly regular compact-valued
mapping®: ¥ — Q of a finite-dimensional separable metric spacnto the
Hilbert cube, all of whose image®(y) of pointsy € Y are absolute extensors
(AE), is a fiberwise retraction of the constant mbp ¥ — Q, which sends every
pointy € Y onto the entireQ, ®'(y) = Q. This means that the restriction of some
continuous map: ¥ x Q — Y x Q onto{y} x Q is a retraction ofy} x ®(y).
Therefore the selection properties of the mépand®’ are the same.

The main result of the present paper is a generalization of Ferry's theorem to
the class of all paracompact spaces:

THEOREM 1.1. Let®: X — (Z, p) be a map of a paracompact spakeinto a
metric space€Z, p) whose value® (x) are complete subspacesffand absolute
extensors(AE), for everyx € X. Suppose that can be represented ad =
I' o ¢, wherep: X — Y is a continuous singlevalued map ¥fonto some finite-
dimensional paracompact spa&eandI’: Y — (Z, p) is a strongly regular map.
Then for every closed subsétc X and every selection. A — Z of the map
®|4: A — Z, there exists an extensigh X — Z of r such thatr is a selection
of ®.

We also prove the following local version of Theorem 1.1:

THEOREM 1.2. Suppose that we replace tiAgE -condition in the hypotheses of
Theoreml.1 by the assumption that the valuégx) are absolute neighborhood
extensordANE). Then the selection can be extended locally, i.e., there exist an
open setU O A and an extensiot: U — Z such thatr is a selection of the
restriction®|y: U — Z.

Note that if the selection can be factorized through a closed subset gthen
the proofs of Theorems 1.1 and 1.2 are easily reduced to the finite-dimensional
selection theorem.

A simple argument shows that under the hypotheses of Theorem 1.1, the multi-
valued mapb: X — (Z, p) is afiberwise retraction of the constant mbjp X —
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L,®'(x) = L, of X onto alinear normed spadewhich containgZ, p) as a closed
subspace.

Our proof is based on the fact (cf. Theorem 3.2) that strong regularity of a mul-
tivalued mapd with ANE-values implies the uniform super Lefschetz property of
®. This allows for an application in the proof of a well-known method of extending
partial §-realizations of polyhedra to their fud-realizations. The main technical
tool of the proof is the notion of theupercoverwhich represents a family of the
covers of one topological space, parametrized by the points of another topological
space, with some additional properties.

We shall denote the family of all open covers of the spadsy couZ). Every
pointz € Z is contained in several elements of the co{®f,} € cow(Z). By
the Axiom of choice there exists a mappinge Z — W, = W, such that
z € W,. We shall callz the centerof W,,,,. In this way we arrive at the notion of
the centeredcovers ofZ, i.e., coveraw = {W} € cov(Z) with a fixed map of sets
z€Z— W =W(z) € w, such that € W(z). So a centered cover can be written
as{W(z) | z € W(z), for everyz € Z} and has the cardinality of the spageWe
shall denote the family of all centered coversoby cow(Z).

DEFINITION 1.3. (a) LetX be any set and any topological space. A map
A: X — cov(Z), given byA(x) = A, is called anX-coverof the space’.

(b) Let X andZ be any topological spaces and= {W(x)} € cov(X). An X-
coverA: X — cov(Z) of the space is called anw-coverof Z if for everyx € X
and everyr’ € W(x), the coverA, is a refinement of the covex,, A, > A,.

(c) An X-cover of a spac& is called anX-supercover(or simply asupercover
of Z when it is clear whak is) if it is an w-cover of Z, for somew € cov(X).

Every open covew € cov(X x Z) (whereX is any topological space) generates
an X-cover, defined by the following formula:

Q) A, ={U c Z | {x} x U is the intersection of some elementwiwith the
fiber{x} x Z}.

In fact we can prove a more general proposition: E&rgover is precisely the
cover of the produck x Z (not necessarily open) whose elements are open subsets
of the fibers{x} x Z.

A trivial example of anX-supercoverof a spaceZ is a mapA: X — {8},
whereé is a fixed cover ofZ. A less trivial example is the rectangle product=
{0, x W,} € cou(X x Z), satisfying the following condition:

(2) For everyx € X, there exists a neighborhoad(x) such thatO(x) C 0y,
whenever € 0.

It can easily be seen that the formula (2) generates a supergovef —
cov(Z) of the spaceZ. Let us now consider the most significant example of a
supercover, revealing the nature of this notion, which shall hereafter be called a
canonicalsupercover.
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EXAMPLE 1.4. For everyy-coverIl of a spaceZ and for every centered cover
w € covp(Y) of a paracompact spadé there exists @anonical supercoverd:
Y — cov(Z) of Z, with the following property:

(3) For everyy € Y, there exist an neighborhoa@d(y) and an elemen (y;) €
w, such thaty e W(y1) and the cover,, is a refinement of the covdi,,,
for everyy, € O(y), i.e.,®,, > I1,,.

Construction Letw = {W(y) | y € Y} € cow(Y) and letw’ = {W, |
A € A} € cow(Y) be a locally finite refinement of the cover. Without loss of
generality, we can assume thaucl= {cl W, | A € A} > w. For everyi € A, fix
apointy(i) € Y such that cW; Cc W(y(1)).

Let

o, = A\ (M [ LA, yecdW c WG},

Clearly, for every pointy one considers in this equality only the intersection of
finitely many coverdl,;,. As usually, the intersectiof\"_, w; of finitely many
coversws, ..., w, is the cover which consists of the intersectigngw; | w; €
w;, I < n} of elements of the covers;.

It is easy to see thab: Y — cov(Z) is a supercover of the spa@ewith the
property (3). LetO(y) C W, be a neighborhood, intersecting only those elements
of clw’” which contain the poiny. Then®, > &, and®,, > Il,,, for every
y2 € O(y). This supercoven will be called thecanonical supercoveinduced by
y — I1, and the covef{W(y)}.

Every continuous map: X — Y induces a map which transfers every
supercoveA of Z into anX-supercoverA? of Z via the formula(A%), = Ay,
x € X. For properties o -supercovers wheKX is paracompact, see Section 3. In
conclusion, we state a result which we shall need in the proofs of Theorems 1.1
and 1.2. It essentially allows for a construction of a genuine selectifom a
A-selectionr, with a control of the distance of ‘approximate’ selectierfsom the
‘exact’ selections’ of the mapd. This theorem is an analogue of [3, Theorem 4.1].

THEOREM 15. Letgp: X — Y, I Y — (Z,p)and® =T o ¢ be as in the
hypotheses of Theorein2 Then for everyy-supercoverE: Y — cov(Z), there
exists aY-supercoverA: Y — cov(Z) of the spaceZ, such that for everyA?)-
selectionr: X — Z of the map®, there exists an exact selectioh X — Z of
the mapd which is(E?)-nearr.

If, in addition ®(x) € AE, for everyx € X, then for the trivialY-supercover
E(y) = {Z}, theY-supercoverA is also trivial and hence, there always exists an
exact selectiom”: X — Z.

In Theorem 1.5(A%) and(E¥) are X-supercovers of, induced by the map.
Also, r is (E¥)-nearr’ means that for every € X, the points-(x) andr’(x) lie in
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some common element of the covef, and a(A¥)-selection means that for every
x € X, the pointr(x) lies in some element of the cova¥ which intersects the set
D (x).

2. Preliminaries

By meshiw) we shall denote sydiamU | U € w}. Thestar of the setA ¢ X
with respect to the cover € cov(X) is the set

stA, w) = JITU | U e wandU N A # 0}
Thestar of a coverw with respect to another cover is the cover
St(w, w') = {S(U,w") | U € w}.

Multiple stars Stwq, St(ws, ..., (w,), ...) will be denoted byw, o --- o wy o wy
and if w; are the same, then liw1)*. Thebodyof a system of open sets is the

set
Uw:U{UlUEw}.

As always,w > w1 will mean that the covew is a refinement ofv;. If f, g: X —
Y are any maps an@ € cov(Y), then the property thaf is w-closeto g will be
denoted by (f, g) < w.

The nerveof a coverw = {Ug | B € B} is the polyhedronV (w) in the
Whitehead weak topology, whose vertigg) are in one-to-one correspondence
with the index setB, andw = (Ug,, ..., Ug,) is an(s — 1)-dimensional sim-
plex of & (w) with vertices(Ug,) if and only if (Y Uy, # #. Furthermore, the
k-dimensionakkeletorof the nerven (w) is the subpolyhedrow (w)® of & (w),
consisting of at most-dimensional simplices. Finallyy (w)b = .

If the imagef (o) of a covero under the magf: A — B is a refinement of the
coverw, then a simplicial mag (o, w): N{c) — N {(w) is defined, taking every
vertex(H) € N (o) into a vertex(U) € N (w) such thatf (H) c U. We shall say
that the mapr is inducedby the relationf (o) > w. Amap?d: X — N{(w)is

said to becanonicalif the preimaged ~1(St(U)) of every open staBSt(U) of the
elementU € w, is contained irU. It is well known that for every open covar of
a paracompact spacéthere exists a canonical map [2].

PROPOSITION 2.1.Letp: X — Y be a map between paracompact spa&es
andY, and suppose thatimY < n. Then for every cover € cow(Y), there exists
a covert € cov(X) with ¢(r) > w and a simplicial mapr: N (1) — N (w),
induced by the relatiop(z) > w, such that for every canonical mag X —
N (1) the imager o ¥ (X) C N (w)™ (or equivalently,® (X) C 7~ 1(N (w)™)).

Proof. Since by hypothesis, dii < n, one can construct a refinemant e
cov(Y) of w of order at most: + 1. We take forr the coverp~*(w’) and forz the
composition

N(T) 3 Nw) B Nw)
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of simplicial maps, induced by the relatiop$r) > w’ andw’ > w, respectively.
Since the nervev (w’) coincides with the skeletow (w’)™ it follows that

(7 0 ¥)(X) = ma(1(H(X))) C 7N (w)?) C N(w)™. m

We shall assume throughout the paper that all single-valued maps are continu-
ous, unless they arise as a result of some special constructions — in which case we
shall separately check whether the property of continuity holds or not.

Next, we introduce some notions from the multivalued analysis. A multivalued
map ®: X — Z is said to beclosed-valuedresp.compact-valuedcomplete-
valuegd if the image ®(x) of every pointx € X is a closed (resp. compact,
complete) subset af. A multivalued map®: X — Z is said to besurjective
if ®(X) = J{P(x) | x € X} coincides withZ.

A singlevalued map: X — Z is said to be &electionof a map®: X — Z
if r(x) € ®(x), for every pointx € X. A multivalued mapd: X — Z is said to
be continuousif for every pointxg € X and every covee € cov(Zy) of the set
Zo = ®(X), there exists a neighborhodd(xg) C X, such that for every pair of
pointsa, b € U (xo), it follows that® (a) C St(® (D), ¢).

A multivalued mapd: X — Z is said to bestrongly regularif for every point
xo € X and every covet € cov(Zp) of Zg = ®(X), there exists a neighborhood
U(xg) C X such that for every point’ € U (xp), there exist mapg: ®(xg) —

d(x), f: ®(x') — P(xg) and homotopiesk;: ®(xg) — P(xg), ki: P(x") —
@ (x") with the following properties:

(i) p(g,ldowy) < eandp(f, ldew) < &,
(II) For everyt € [0, 1], p(h;, |d<1>(x0)) <é& andp(k,, |dq>(x/)) < ¢;and
(i) ho= fog, ko= go f,h1 =Ideny andks = ldg .

Note that every strongly regular map is continuous. It is also cleadthat —
Z is strongly regular (resp. continuous) if and onlydif X — ®(X) is strongly
regular (resp. continuous). For the statements and proofs of more important facts
on strongly regular maps, we need to introduce some concepts connected with the
name of Lefschetz.

DEFINITION 2.2. Leta be a system of open subsets of a spacand let.N
be a subpolyhedron of the polyhedrovi, containing all vertices. Apartial a-

realization of the polyhedronw is a mapMy . 7 such that for every simplex
A € N, the setf (A N M) is contained in some elemevite «.

DEFINITION 2.3. A family ¢ = {Z,} of closed subsets of a metric spaceas
said to have thaniform Lefschetproperty €qui-Lf), provided that for every cover
8 € cov(|J 4) of the body of the familyg, there exists a cover € cov(| J §) such

that for every se¥,, every partialy -realization;' C N 5 Z,, of any polyhedron
A can be extended to a fultrealizationy’ > Zy.
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Remarks(1) If the bodyl J § is closed inZ, then instead of a cover of the body
(U & in Definition 2.3 one must take a cover of the spaciself.

(2) The dependence gfon s will be denoted by = equi-Lfg (8). If the family
g consists of only one elemetb, then we shall writes = Lf,(3).

DEFINITION 2.4. Topological space is called anabsolute[neighborhoodl
extensor if every continuous map: A — Z, defined on a closed subspagenf

a metric spaceé, can be continuously extended on the whole spcn some
neighborhood ofd]. A class of all absolute [neighborhood] extensors is denoted
by A[N]E.

It is known that the class of absolute [neighborhood] retracts (A[N]R) is con-
tained in the class of A[N]E and these two classes coincide for metric spaces [2].
Another well-known fact deals with a coincidence of ANE’s and spaces with Lef-
schetz’s property: A metric spaceis an ANE if and only if for every € cov(Z),
there existy € cov(Z) such thaty = Lf(8) (see [2]).

DEFINITION 2.5. A closed-valued mag: X — Z is said to beuniformly
Lefschetif the family {®(x) | x € X} of its values has the equi-Lf property.

It is clear, that the uniform Lefschetz property implies uniform local absolute
extendability and the equi-L"€ property of the family{® (x) | x € X} (cf. [2, 6]).

3. Uniformly Super Lefschetz M-Maps

Note that the concept of a uniform Lefschetz property is very useful. However, it
is more restrictive than the notion sfrongregularity. In order to be able to com-
pare them with respect to their strength and usefulness, we give below a modified
version of Definition 2.5 in which covers have been replaced by supercovers.

DEFINITION 3.1. A closed mapb: X — Z is said to beuniformly super
Lefschetaf the family of its valueg® (x) | x € X} has the following property:

(A) For everyX-supercoverlt: X — Z of the spaceZ there exists arX-super-
cover A: X — Z such that for every point € X and every partialA -

realizationV' > M LA @ (x) of any polyhedron¥, there exists its extension
to a full E,-realization; LN d(x).

Remark The dependence of the supercoveron the supercovel will be
denoted byA = (A)(E).

THEOREM 3.2. If ®: X — Z is a strongly regular multivalued map of para-
compact spac& into a metric spaceZ, the imagesb (x) of all pointsx € X are
ANE’s, and the image (X) of the entire spac« is Z, then the multivalued map
® is uniformly super Lefschetz.
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RemarkIn fact, the uniform super Lefschetz property is equivalent to the strong
regularity of theM-map®. However, we shall not need this fact.

The proof of Theorem 3.2 is based on the following proposition:

PROPOSITION 3.3.Under the hypotheses of Theor8(2, for every pointyg € X
and every cover € cov(Z), there exist a coves € cov(Z) and a neighborhood
U (xg) C X such that:

(4) For every pointx’ € U(xg) and every partials-realization ¥ O M 5 D(x")

of any polyhedronV, there exists its extension to a fulrealization & BN
D (x)).

Proof. Let ¢y, &2, and$ be covers such thak;)® > ¢, e, = Lfg ) (e1), and
(8)° > 5. Then the coves is the desired one. Let us verify that. Sindeis a
strongly regular map it follows that for every poiry € X and every coves, there
exists its neighborhood (xg) C X for which the conditions of strong regularity
are satisfied.

Letx’ € U(xg) and N D M 5 @ (x") be a partiab-realization of an arbitrary
polyhedron&. ThenN D M 5 d(x) EA ®(xp) is a partial(e;)-realization of

the polyhedronV. Sinces; = Lfg () (€1), there exists a fulle;)-realizationyV BN
@ (x') of the polyhedronV . Therefore; = g o ¢ will be the desirect-realization

NS @ (x") of the polyhedrony . a

Proof of Theorem 3.d.etw = {U(x) | x € X} € covw(X) be a cover such that
for every pointx’ € U (x), E, is a refinement of:,.. Apply Proposition 3.3 for the
point x and the coveE, € cov(Z). We obtain a neighborhooél (x) c U(x) and
a covers, € cov(Z) which satisfy the property (4) above.

Consider the canonical supercover X — cov(Z), A(x) = A,, induced by
X &, and the covef© (x)}. It follows by property (3) from Example 1.4 that:

(5) For everyx € X, there exists a neighborhoa@(x’), x € O(x’), such that
Ay > 8.

LetN D M 5 ®(x) be a partialA . -realization of an arbitrary polyhedroM .
It follows from (5) thaté is a partials, -realization. It follows from (4) that there

is a full E,-realization.V; N ®(x) such that |, = &£. Observe that,, > E, for
pointsx € @ (x') C U(x'). Therefore; is anE, -realization. O

Supercovers have many properties of ordinary coversALeX — cov(Z) be
an X-supercover. We shall say that mafisg: X — Z are A-closeif for every
x € X, the imagesf (x) andg(x) lie in a common element of the covey,. The
notion of aA-selection is introduced in an analogous manner: amap — Z is
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called aA-selectionof a mapd: X — Z if for every pointx € X, its imager(x)
belongs to the star 8b(x), A,) of the imaged (x) with respect to the covek, .

For paracompact spaces the property of extendability of star refinement of su-
percovers holds:

LEMMA 3.4. For everyn and for everyY -supercoverE, there exists & -super-
coverA such that(A,)" > E,, for everyx € X.

Proof.Letw = {@(x) | x € X} € covw(X) be a cover such that for every point
x' € O(x), the coverE, is a refinement of,.. We associate to the pointa cover
I1, € cov(Z) so that(I1,)" > E,. This correspondence and the couemduce a
canonical supercovex: X — Z, A(x) = A,, with property (5). Since € O (x'),
it follows that(A,)" > (IT,)" > E > E,. a

LEMMA 3.5. For everyn and everyX -supercovelE, there exist ark -supercover
A and a covelo = {W(x)} € covp(X) with the property that for every-tuple of
pointsas, ..., a, € W(x), the multiple starA,, o --- o A,, is a refinement of the
Coverk,.

Remark We shall denote this property of supercovers(hy” > E. We shall
also say that the cover realizesthe given refinability of the supercover.

Proof. Let E be anX-supercover such thatt,)" > A,, for everyx € X.
Consider a covew = {O(x) | x € X} € cow(X) such thatE, is a refinement
of E,, for every pointx € O (x’). Consider the canonical supercover X — Z,
A(x) = A,, such that for every € X, there exists a neighborhoddf (x) and
a element9(x’) € w, x € '), with A,» > E,, for eachx” € W(x). Let
a; € W(x). Then(A,, o---0A,) > (Ev)" > E,. O

A more detailed study of the concept of uniformly super Lefschetz mappings
and refinements of supercovers will only be needed in the proof of Theorem 1.1
(cf. Sections 4-6).

Let X be a paracompact spacg; D X, D --- a nested sequence of closed
subspaces, such that for evéryX,.; C Int X;. Let Z be a Banach space with a
fixed nested sequendg O V, D - - - of closed convex subsets such that for every
k, Vis1 C Int V,, and letV = mk21 V.

DEFINITION 3.6. A closed mapb: X — Z is said to bestrongly uniformly
super Lefschetor the filtrations{ X, } and{V,} if {®(x) | x € X} has the following
property:

(SA) For everyk and everyX-supercovelE: X — Z of Z such thatb(x) C V

andV, > E,, for everyx € X, there exists aiX-supercoveA: X — Z
such that:

(iv) Vie1 > A, for everyx € X;.1; and
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(v) For everyx € X and every partialA .-realization\ > M 4 D(x)
of any polyhedrony, there exists its extension to a fulll,-realization

N S o).

Remarks(1) V; > E, means thaV, is contained in some element Bf; and
(2) The dependence @ on E will be denoted byA = (SA)(E).

The following claim is quite evident:

LEMMA 3.7. For every cover € cov(Z) with V;, > o and every integer, there
exists a covey € cov(Z) such thatV,,; > y andy”" > o.

Using this lemma, analogous version of 3.2-3.5 can be proved for strongly
uniformly super Lefschetz mappings.

THEOREM 3.8. If ®: X — Z is a strongly regular multivalued map of para-
compact spac& into a metric spaceZ, the imagesb (x) of all pointsx € X are
ANE'’s, and the image (X) of the entire spac« is Z, then the multivalued map
® is strongly uniformly super Lefschetz.

THEOREM 3.9. Letk andm be arbitrary natural numbers. Then for every inte-
gern and everyX-supercoverr, such thatv, > E,, for everyx € X,,, there exists
an X-supercoveA and a cover = {W(x)} € covg(X) suchthatA, o---0A, >
E., foreveryas,...,a, € W(x), andV,1 > A,, for everyx € X,,.

Remark We shall denote this property of supercoversy>sa E.

4. Proofs of Theorems 1.1 and 1.2

From the very beginning we shall be proving Theorems 1.1 and 1.2 by means of the
following simplification: Z = L, ®(X) = I'(Y) = L, whereL is a Banach space.
Let us show that this causes no loss of generality. In fact, we take an isometrical
embedding of the imagé(X) into some Banach spade (see [2]). It is clear
that if I was a strongly regular map then the mép Y [[{x} — L, T'|y =
I, andI(x) = L will also be strongly regular. We define a multivalued map
@ X [[{x} — L bythe formulad’ =T o ¢’, wherep”: X [[{x} - Y []{*}isa
singlevalued map such that|y = ¢ andg’(x) = *. Itis clear that if the extension
problem can be solved for the partial selectih= X [[{x} D A = L inthe
simplified situation then it can also be solved in the original situation.

Theorems 1.1 and 1.2 will be deduced from Theorem 1.5 and the following
proposition:

PROPOSITION 4.1.LetA be aY-supercover. Then every partial selectianA —
L of the mapd can be extended onto some neighborh®gd ) to a(A?)-selection
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7 O(A) — L. Moreover, there exists a closéz}-subsetd, A ¢ A C ©(A) such
that7| ; is the genuine selection of

Proof. Since the Banach spaéeis an absolute extensor for paracompact spaces
[2], there exists an extensidn X — L of the map-. Consider & -supercover
which is a star-refinement af, (A)2 > A, and a covew = {U(x)} € cowp(X)
such that(A?), > (A?),, for everyx’ € U(x). Without losing generality we
may assume that(U (a)) C St(®(a), AW)) for everya € A and that®(x) C
St(d (x), Aw(x)) for everyx’ € U(x) (since® is continuous).

For everyx € U(a) € O(A) E'U{U(a) | a € A}, we have that

F(x) € S{ P (a), Z(p(a)) C St(P(x), (A(p(a))z) C SH(P(x), Ap@))
C StP(x), A(p(x))-

Therefore®(A) is the desired neighborhood. Sindeis a continuousM-map,
A, ={x € X | F(x) € St(®(x); &)}, ¢ > 0, satisfies the following properties:

(vi) IntA, D ClA,, for everye > ¢’; and
def

(vii) B = (,—; A1/, coincides with{x € X | 7(x) € ®(x)}.
Let C C O(A) be a closed neighborhood df ThenA = BN C is a closed
Gs-subset ofX, A C A C O(A) andr|; is a genuine selection. a

Deduction of Theorems 1.1 and 1.2 from Theorem 1.5 and Propositiohet. 1
r be a partial selection cb. By Proposition 4.1 we can assume thais a closed
G;-subset. Multiply everything bR to get a partial selection: A —~ Lofa
multlvaluedmapCD = @ xId, whereA = A xR, X =X xR, Y =Y xR,
L=Lx R, ¢ = ¢ xId,and7 = r x Id (note thatX is again paracompact).
The map® is strongly regular and it satisfies all the hypotheses of Theorem 1.5.
Therefore all conclusions of Theorem 1.5 are valid for the bap

The centered family = {E(,t) | (I,t) € L}, defined byE(l,) = L x
(—2,2),if |1| < 2andE(l, 1) is a neighborhood af, ) of diameter 2, if |¢| > 2,
generates the trivial’-supercover'. Let us consider the nested sequefige =
Lx[-1- %, 1+ 21} of closed convex subsets bf V = (5, Vi = L x [-1, 1],
and the nested sequence

Xp=Xx|-2-2 141
£ 2 2% 2 %
of closed subsets of. It can be easily seen that(x) € V andV, > E(¢(%x)), for
everyx € X, andk > 1. By Theorem 3.8® is the strong uniform super Lefschetz

mapping for the filtration$X,} and{V,}.
The following easily verifiable property of the covers stated separately.

LEMMA 4.2. LetX be a paracompact spacg; A x[—oo, 00] — L x[—o00, o0],
f(A xt) C L xt,foreveryr € [—o0, 00], a continuous map ang: U — L a
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continuous map from neighborhodd c X of A such that for everyi € A, g(a)
and f(a) lie in an element ot (i.e., g|; is e-close tof|z). Then there exists a
neighborhoodW C U of A in X such that a composed map W=WUA x
[—00,00] = L, hlw = g, hlax[-x.co) = f, defined oW C X x [—o00, o¢], IS
also continuous.

Hint. It is enough to consider only the simplest chge= 1.

Proof of Theorem 1.2Applying Theorem 1.5 to the trivia?—gupercoverE,
we obtain aY-supercoverA. By Proposition 4.1, we can assumeto be aGs;-
subset inX and that a partial selectiohcan be extended to some’-selection
u. O(A) — L, where@(A) D Ais a~neighgorhood oA inNX. By Theorem 1.5,
there exists a genuine selection 9 (A) — L of the mapd, which ise-close to
u. Hence the projection of the poiiitx, t) € L onto L belongs tOdD(x)

Itis easy to see that Lemma 4.2 applieg'te: r xId[_« o) andg = i O(A) —>
L. Then there exists a neighborho®d C O (A) of A such that composed map
h: W= WUA X [—00,00] = L, hlw = it, h| ax[-00.00] = f, IS CONtiNUOUS. Since
A is aGs-set, A is also aGs-set. It is also easy to see that the grdph x (x))}
of a continuous functiory: V — [0, oo], V is a neighborhood ofl in X, which
assumes the valus only at points fromA, can be inscribed i if and only if A
is aG;-subset ofX. Finally, the desired selection V — L of the mapd is given
by 7(x)|x = r andr(x) is the projection of the poirfi(x, x(x)) € L onto L, for
x € V \ A. Continuity of7 is thus evident. O

Proof of Theorem 1.Here we need the following strengthening of Theorem 1.5
for M-mapping with filtration:

THEOREMA4.3. LetV, D Vo D -+, Viy1 C IntV,, be a nested sequence of
closed convex subsets of a Banach spac® = ﬂk>1 Vi.LetX; D XoD -+,

X1 C Int Xy, be a nested sequence of closed subspaces of a paracompact space
Xandletp: X - Y, I Y - L, ®=To¢, ®(x) C V,foreveryx € X4, be as

in the hypotheses of Theoreh Then for every -supercoverE: Y — cov(Z)

with Vi > E, ), x € Xi, there exist art’-supercoverA: Y — cov(Z) of Z and

an integerm, such thatVi,,, > Ay, x € X, and for every(A?)-selection

r: X — Z of the mapd, there exists an exact selectioh X — Z of ® which is
(E¥)-nearr.

Remark The proof of Theorem 4.3 is similar to the proof of Theorem 1.5 (see
Section 5).

Applying Theorem 4.3 to the trivial -supercovett, we obtain a¥-supercover
A with L x [=1, 1] > A, for everys € X x [-1, 1] = () X AsT x [-1,1]
is convex, an extensioft X — L of # can be choosen with(X x [—1,1]) C
L x[—1, 1]. Repeating the proof of Proposition 4.1 respectively-fave obtain the
coverw = {U(X)} € covo()?) from Proposition 4.1 which can be choosen so that
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Ux,00 =L x (— % 1), for everyx € X. Therefore the neighborhoatl(A) of A
containsL x (—— —) The rest of the proof of this case coincides with the local one
because a neighborhodd c (9(A) of A can be choosen with x (—— —) cw

and the domain of the functicncan be extended over the whole space a

5. Proof of Theorems 1.5 and 4.3

Letd: X % v 5 L be a multivalued map which satisfies the hypotheses of
Theorems 1.2 and 4.3. By Section 4, the proofs of Theorems 1.1 and 1.2 reduce
to the proofs of Theorems 1.5 and 4.3. We can explicitly construct the supercover
{A,} from Theorem 1.5 (and shall briefly explain what additional constructions
have to be done for Theorem 4.3). For this purpose we consider the following
sequence of -supercovers of the spade

E, 1,E ;..
.. Eo, E), ()
A

which satisfies the following properties:

(6) E; = (A)(E;),for0< i < n (E! = (SA)(E;) in the case of Theorem 4.3);

7 (E)? > E 1 (Ef >sa El+1 in the case of Theorem 4.3), forQi < n; and

(8) (E)® > E, (E,)* > E,andA® > E} (E3 >sp E, E* >sa E, andA® >4 E)
in the case of Theorem 4.3).

The supercoven will be the desired one. Since the supercoxers defined
in Theorem 1.5 by means of the supercogemwe shall briefly denote it by =
(B)(E).

Due to the obvious dependence &fon E the following can be observed. If
I'(y) € AE, for all y, the supercovef is trivial, and E, consists of only one
element, namely the spade for everyy, then in the sequende) all supercovers
can be taken to be equal ©(including A).

We shall reduce the proof of Theorem 1.5 to the following proposition:

PROPOSITION 5.1.Let E and A be Y-supercovers such that = (B)(E) and
supercovelE is the second term of the sequerige Then

(C) For every(A)?-selectionr: X — L and everyY-supercoverM there exists
an M¢?-selectionr’: X — L of the mapd which |s(E)<” -close to the(A)?-
selectionr.

Remark We shall denote the dependence of Mie-selectiorv’ on all others by
=(C)(E,E,A,r,M).
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Proof of Theorem 1.9.et £ and A be Y-supercovers such that = (B)(E)
and theY-supercoverEy, (E1)3 > E, is the second term of the sequenes.
Analogously, letA; = (B)(E,) andY- supercovelEz, (E,)® > Ei, be the second
term of the corresponding sequen@e, etc. Without losing generality we may
assume that mesk; < 2~ and mestE; < 27,

Apply Proposition 5.1 to the\“-selectionr in order to get aA;)¢-selection
ri: X - L, r;, = (C)(E, E1, A, r, A1), Which is (E1)?-close tor. Analogously,
introduce(A;)?-selections

= (C)(E;_1, Ei, Aj_1,ri_1. A)), i €{2,3,...).

As a result we have constructéd; )?-selections; such thap (r;, r; 1) < E,»H.
It is easy to get the estimates:

P(”n, rm) < (En+l)w 0--+0 (Em)(p
and
(Epi1)? 00 (Ep)? > (E,)* .

Therefore the sequence of mafpg is fundamental. Since (x) € St (x), A;)
and® (x) is complete, the fundamental sequefiggconverges to some continuous
mapr’: X — L, for whichr’(x) € ®(x). Sincep(r, ') < (E})%while (E1)% > E
this completes the proof of Theorem 1.5. O

Before we procede with the proof of Proposition 5.1, we pause for the following
important technical result:

PROPOSITION 5.2. For everyY -supercoverA of the spacd., there exists & -
supercoverB such that:

(D) Every mapy:: P — StI'(y), By) of a paracompact spacé into a B,-
neighborhood of the fiber(y) can beA,-approximated by a mag: P —
().

Remark The dependence of the supercoseon A will be simply denoted by
= (D)(A).

Proof. Let (A1)® > A, A, = (A)(A1), and(B)® > A, beY-supercovers, and
letw = {W,} = w‘l(By) be a cover ofP. Let & (w) be the nerve of the cover

w, N{w) 8 I'(y) be a map, given on its 0-dimensional skeleton, which takes the
vertex (W, ) into a points, € I'(y) such that, € y(W,) and (W,) is contained

in some element of the covelt,. The mapé, defines a partial-realization of

the nerveN (w). Let&: N(w) — T'(y), &l ywo = &o, be the existingAy),-

realization of the nerve. Then the composit@n P N{(w) 5 I'(y), wherev
is the canonical map, is the desiragd-approximation ofy. O
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6. Proof of Proposition 5.1
Let us construct another sequence&’e$upercovers of the spaée

A, M, M,, My_1, My_1, M,_5, M,_5, ..., Mo, Mo (s5%)
such that:

(9) My = (D)(My1) for 0 < k < m;
(10) (My)? > M, for 0 < k < n; and
(11) (M,)> > M, M > A.

Without losing generality, we may assume tiéf M, and M, are convexy -
supercovers, i.e., the coveds,, (M;), and (My), consist of convex sets, every
subsequent supercover #®) and(xx*) is a refinement of the preceding one.

Consequently, we construct for evekye {n,n — 1,...,0}, coversw; =
{(Wi(y) | y € Y} € covp(Y) such that:

(@) (wp)® > wep1;

(B) T'(a) C SKT'(b), (Mp),), for every pair of points, b € Wi (y) € wy; and

(y) Every coverw, realizes all conditions of refinability of -supercovers (6)—
(11) (see remark after Lemma 3.5).

Let dimY = n. By Proposition 2.1, there exist a cover € cow(X) and a
simplicial mapn’: N (t') — N (wg), induced by the refinability of the covers
¢(t') > wo, such that for every canonical map: X — N (t'), the imager’ o
B/ (X) lies in N (wo) ™.

We can find a refinement = {V(x) | x € X} € cow(X) of the covert’ €
cov(X) such that the image(V (x)) lies in an element of the covény), ) €
cov(L). From this and from the hypothesis that a A?-selection it follows that:

(12) r(V(x)) C St(r((P(x)), A(p()c) o (MO)zp(x))-

Let®: X — N (r) be a canonical map and’: N () — N (/) a simplicial
map, induced by the refinability > 7’. Since?d’ = 7" o 9: X — N (') is the
canonical mapg’ o ¥/ (X) =’ o " (9 X) C N (wp)™. Therefore

9(X) C (' o) HN (wo)™) = 7 HN (wo) ™),
wherer =7’ on”: N{t) = N {(wp).
We shall construct the desirédd?-selectiorn’ as the composition
X2 2 YW (wo)®) 5 L

of mapsy andv,. The mapyr will be constructed by induction on the preimages
7N (wp)®) of the skeleta of the neru# (wpg):

i T H N (wo) ) = L, Y | m (N (wo)®) =¥, £=0,1,2,...,n,
such that for every € X, 9 (x) € 71N (wo)®):

(8) Y (¥ (x)) andr(x) are E,,,-close; and



360 S. M. AGEEV AND D. REPOVS

(&) Ya (D (x)) € SUP(x), My(x))-

We first construct the magg. Let (Wo(y)) be a vertex ofA (wg)©@ and(V (x))
be a vertex fromr ~1((Wy(y))). Theng(V (x)) C Wo(y). By (8) and (12) we get
(13) r(V(x)) C SUT'(y), Apx) © (Mo)g(x) © (Mop)y).

Since the covetg realizes all refinabilities of the supercovers it follows that:
(14) Ay © (Mo)g(x) © (Mo)y > Ayry 0 AZ.

It follows from the above that:

(15) r(V(x)) C SUT'(y), Ay © Ai) and, consequently,
T'(y) N SUr(V (X)), Mgy 0 AY) # 0.
If we define the mag/ on the vertexV (x)) as the point:
(16) v, € T'(y) N Str(V(x)), Ay © Aﬁ), we get a map:

M= X (Wo))) D 72 (WoN®@ 22 T(y)

which is a partial E£;) ,-realization of polyhedrom\(. Indeed, ifo = (V (xo), ...,
V(x;)) € M, then:

A7) = (V(x;)) C Wo(y), for everyi;
(18) V =N V(xi) # 2.

Letv € V; and

(19) Y5 (Ui_oV (x)) = UiLovs, C Str(V(x:), Ayr) o A%) C St, Ay 0
A% o (Mo)y(x)) C St(v, IT), wherell = Ay, o A3,

Hence (o N M) is contained in some elementGf which is, by (8), a re-
finement of(E(),. SinceE| = (A) Ey, there exists anEy),-realizationyo: M —
I'(y) such thatyo| M@ = . By studying the value ofy, on all the vertices
(Wo(y)), we obtain a magro: 7N (wo) @) — L which satisfies the properties
() and (b) stated below and),—(¢);, for k = 0. Difficult verifications of(8);
and(g)y, for everyy, will be realized in (25)—(26).

Formulation of propertiega), and (b),. For everyk-simplex
k
8 = (Wo(yo0), - .. Wo(yi)) € N (wo)® (i.e., [ Wo(yi) # @),
i=0

there exists a point € Y and an elemenW,(y) € wy, Wi(y) D Uf:o Wo(yi),
with the following properties:

@k Yi(m=(8)) C SUT(y), (My),); and

(b). The restrictionr ~1(8) Y% I ofthe mapy onm ~1(8) is an(Ek)ﬁ—reaIization
of the polyhedronr —1(§).
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Suppose that we have already constructed maps < k, satisfying (&)
and (b), and such thaty; and;_; agree on the common part of their domains.
Consider an arbitrargk + 1)-simplex

§ = (Wo(yo), ..., Wo(yis1)) € N (wo)**V.

Denote bys; the k-simplices of the boundarys. It follows from (a) that
x//k(n—l(aj)) C StI'(z;), (My);;), wherez; is the center of a neighborhod#, (z;)
€ wy, such thatw, (z;) contains all element®y(y;), corresponding to the vertices
8;. ConsequentlyiVy (z;) D g Wo(y) # ¥ for all j, and hencg);y Wi(z;) #
@.

By (), there exists an eleme¥,,1(y) € w1, containingl )5 Wi(z)).
From (a) and (8) we obtain the inclusion:

(20) Yi(wr1(38)) = Uy (r1(8,)) € USHT (z)), (Mp);;) C ST (y),
(Mk)z_,- o (MO)V)
SinceM; o My > M, and M, = (D)(My.1), there exists a map: 7 ~1(38) —

I'(y), such thap (x, Yx) < (Mi11),. Since the covefM,. 1), is convex, the linear
homotopyH: 7~1(38) — L from v to x is realizable inside $F(y), (Mi41)y).

Therefore, and by (b) it follows that the mapr —1(8) D 7 ~1(36) ES I'(y)isa
partial (My11), o (E?),-realization of the polyhedron—1(8). Since(E?) o M1 >
(E,f) 08 > E;_,andE; , = (A)(Ex;1), there exists aik;;-realization:

Vgt ™8 — T(y) such thaty, 4198 = .

So we have constructed the homotafly @ x [0, 1] — L of polyhedron@ =
7~1(38) and the mapl; 4. # x {1} — L defined on the upper boundary of the
polyhedral cylinder? x [0, 1], # = n~%(8). These maps agree on the common
domain@ x {1}. Since(, @) is a polyhedral Borsuk pair (see [2]), the homotopy
H can be extended to homotop¥. » x [0, 1] — L such that:

(21) Hl@ x [0,1] = H;

(22) H|P x {1} = ¥4, and

(23) ﬁ(a x [0,1]) = Yyy1(o x {1}) U H((oc N @) x [0, 1]), for every simplex
oeP.

Let us denote the restriction & onto the lower boundarg® x {0} by
Ve P=n106) > L.
So there exists a map
Yirat 7NN (wo) D) — L with Yl ™8) = ¥,
By (23),

Vi1 (@ H8) = Y (i) C Y (P)UH@ x [0, 1))
C SHUI(y), (My41),)-
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Thus the property (@)1 has been verified.
Now let us verify (b).1. By (23) we have that

(24) ¥?,1(0) C Y,1(0) UH((0 N Q) x [0,1]) C Sty 1(0), (Mi41),), for
every simplexo € 771(8).
But ¥, ,(0) lies in an element ofEx11)y, and(Exi1)y o (M41)y > (EZ ).
Hencey; ., is a(EZ,,),-realization of polyhedrom —1(s).
In this way we have constructed a mgp 7 —1(N (w)™) — L, satisfying
(@), and (b),. Let us show that’ = i o ¥: X — L is anM¥-selection of® and

o(r, 1) < (E)? (hereX 2 =YW (wo)™) is the canonical map).
Indeed, let

k
xe(\Ve), D) €o=(V(x),..., V() Ca N (wo)™).
i=0

By (a),—(b),, there existsW, (y) € w, with W,(y) D Uff:()(p(V(x,»)) such that
Yu(0) C SUT(y), (My,),) andy, (o) C W € (E,)3. From (8) ande(x) € W, (y)
we havel'(y) C S(I'(¢(x)), (Mp),). Therefore:

(25) r'(x) = Y (P (x)) C ¥u(o) C SUT(y), (My),)) C
C StI'(¢(x)), (Mo)y o (M,)y) C ST (p(x)), My())
and, hence,
(26) ¥, (o) C Sty ((V (x0))), (En)i) = St(vy,, (En)ﬁ) CWe (En)jl, > Ey- O
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