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INTRODUCTION

One old and well-known problem of the geometry
of Banach spaces is studying the topological properties
of the set Q(n) of classes of isomeric n-dimensional
Banach spaces with the Banach—-Mazur metric

d(E, F) = Ininf{{|T1| -
-[iT"'f| T: E - F is an isomorphism}.
It is known [1] that the space Q(n) is compact.

The main problem is to establish whether or not
Q(n) is isomorphic to the Hilbert cube /= (the West
problem [2, p. 544]). By the Torunszyk criterion {3], a
compact space X is homeomorphic to I~ if and only if
X is an absolute extensor and has the disjoint disk prop-
erty DD™P in any dimension m; therefore, the basic
conjecture that the specified spaces are homeomorphic
breaks into two parts:

(A) Q(n) € AE;

(B) Q(n) has the m-dimensional dls101nt disk prop-
erty DD"P for any m.

The one-to-one correspondence between norms in
R” and the set C(n) of convex compact symmetric bod-
ies given by the Minkowski functional makes it possi-
ble to reduce studying Q(n) to studying the natural
action of the group GL(n) of all linear nondegenerate
transformations of R" on the space C(n) with the topol-
ogy generated by the Hausdorff metric. Namely, the
quotient space C(n)/GL(n) of C(n) with respect to the
equivalence relation induced by the natural action of
GL(n) (i.e., the space of orbits) is homeomorphic to the
Banach-Mazur compact space Q(n). This allows us to
apply results of the theory of topological groups of
transformations. The application of the equivariant the-
ory of extensors to solve the stated problem is based on
the following two theorems.
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(i) If the convex structure on a space X is consistent
with the action of a compact Lie group G and there is
at least one point fixed with respect to this action, then
X is an equivariant absolute extensor [4).

(ii) If a compact group G acts on a metric space X
that is an equivariant absolute extensor, then the orbit
space X/G is an absolute extensor {5].

The convex structure on C(n) determined by the
Minkowskii linear combination of convex bodies is
consistent with the action of the group GL(n). Thus, (i)
and (ii) imply that C(n)/H € AE for any compact sub-
group H. Unfortunately, GL(n) is not a compact group,
and the principal difficulty, at least in problem (A), is
the passage from compact to locally compact groups
and study of the extensor properties of their actions.

The second approach to solving the problem is to
reduce the question about the quotient space of the
action of a noncompact group to the question about the
quotient space of the action of a compact group. This
second approach allowed P. Fabel to prove conjecture
(A) for n = 2 (without the use of the equivariant theory
of extensors but with the application of some spaces of
conformal mappings). On May 23, 1996, at the Session
in memory of Borsuk and Kuratowski in Warszaw,
Fabel reported about the Banach—Mazur compact space
Q(2); after that, S. Ageev applied the theory of
GL(n)-extensors to show that the compact space Q(n) is
locally contractible for all n (the contractibility of the
compact spaces Q(n) was known, although unpub-
lished). However, because the space Q(n) is strongly infi-
nite-dimensional, the proved inclusion Q(n) e LC N C
does not imply that Q(n) € AE. In addition, Ageev and
S. Bogatyi noticed that the reduction of the question
about the action of a noncompact group GL(#n) to the
question about the action of the compact group O(n)
that was suggested by Fabel makes it possible to prove
[by applying Theorems (i) and (ii) stated above] Con-
jecture (A) in the general case {6]. In June, 1996, Ageev
and D. Repovs deeper developed the theory of exten-
sors of locally compact groups, which made it possible,
in particular, to strengthen the inclusion Q(n) € LC to
Q(n) € AE, i.e., to give the second proof of Conjec-
ture (A).

This work can be considered an exposition of the
principles of the theory of extensors of locally compact
groups, which is nevertheless advanced to a degree that
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makes it possible to prove (A) without the use of the
theory of convex bodies (for example, the Loevner
ellipsoid). Moreover, not only Q(n) = C(n)/GL(n), but
also the space C(n)/H of orbits for any closed subgroup
H c GL(n) is an absolute extensor. The equivariant
local contractibility of the GL(n)-space C(n), which is
established in this work, makes it possible to make a
step forward in proving Conjecture (B) and, therefore,
the whole conjecture that Q(n) = I, namely, to prove
that the open dense subset Qy(n) < Q(n) of classes of
isometric nonsymmetric Banach spaces is a /~-variety.

1. PRELIMINARIES

Let G be a locally compact Lie group. An action of
G on a space X is a homomorphism T of G into the
group of all homeomorphisms of X such that the map-
ping (g, x) > T(g)(x) = g - x = gx from G X X into X is
continuous. The space X is then called a G-space.

If x € X, then the stabilizerof xis G, = (g € G| gx=x]
and the orbit of the point x is G(x) = {gx| g € G}. The
space of all orbits is denoted by X/G, and the natural
mapping nt: X — X/G defined by n(x) = G(x) is called
the orbit projection. The space of orbits X/G is
endowed with the quotient topology generated by the
mapping =.

The action of a noncompact group G is poorly con-
sistent with the orbital structure of X: the orbit of a
point may be dense in X, the space of orbits X/G non-
Hausdorff, and two orbits with the same stabilizer non-
homeomorphic. Palais [7] defined a class of G-spaces
on which a locally compact group acts and called it
proper; this class does not have the mentioned short-
comings.

Definition 1. (a) For subsets A, B — X, ((A, B)) is the
subset {g| gA "B # @} in G. We call the set A thin with
respect to B if ((A, B)) is precompact (i.e., contained in
a compact subspace). Since ((A4, B)) = ((B, A))™, B is
then thin with respect to A.

(b) A set A is called small if any point x € X has a
neighborhood O(x) thin with respect to A.

(c) A G-space X is called proper if it has a base of
small neighborhoods.

We remind the reader that a continuous mapping
S X > Y of two G-spaces is called a G-mapping if
flgx) = gfix) for all g € G and x € X. The stabilizers
are then in the inclusion relation G, c Gy.

Definition 2. A cut at a point x is a G-mapping
@: U — G(x) of some G-neighborhood U (G - U = U)
of the orbit G(x) such that ¢(x) = x. The preimage ¢~'(x)
of x is also called a cut or a G-kernel."

Palais Theorem. A proper completely regular
G-space X has a cut at any its point.

In what follows, all our reasoning is concerned with
separable metric proper G-spaces; the class of such
spaces we denote by ©.
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Proposition 1 [7]. Let X, Y € & and H is a compact
subgr_oup of G. Then

(aA)XxYe Sand G/He ©;

(b) the orbit G(x) is closed in X, the stabilizer G, is
compact, and the natural mapping of G/G, into G(x)
defined by gG > gx is a homeomorphism;

(c) the space of orbits X/G is a metric separable
space and dimX/G < dimX; _

(d) the space X can be metrized by a metric d such
that it is invariant [i.e., d(gx, gx") = d(x, x')} and the
topology of the space of orbits X/ G is generated by the

metric d ([x), [y)) = inf(d(x, y)| X € G(x),y' € GO)};
(e) if d is a complete invariant metric on X, then
(X/G, d) is a complete space.

A matrix group is a Lie group G that is subgroup of
the general linear group GL(n, R) = GL(n) for some n.

Theorem 1. A group G is matrix if and only if, for
any its compact subgroup H, there exists a finite-dimen-
sional linear G-space V where the stabilizer G, of some
point v coincides with H.

Definition 3. A G-space X is called an equivariant
absolute neighborhood extensor (symbolically, X € G-

ANE) if any partial G-mapping Z <> A 2 X defined on
a closed equivariant subset A of the G-space Z from the
class & can be extended to a G-mapping $: U — X
defined on some G-neighborhood U such that A c U. If
U = Z, then X € G-AE; i.e., X is an equivariant absolute
extensor.

The most important and nontrivial example of
G-A[N]E-spaces for locally compact groups G are con-
vex G-spaces. .-

2. THE PROOF OF CONJECTURE (A)
WITH THE USE OF THE LOEVNER ELLIPSOID

Theorem 2. The Banach-Mazur compact space
Q(n) is an absolute extensor.

Proof. For B € C(n) and a subgroup H ¢ GL(n), we
put [Bly = {T(B): T € H}. By the John theorem [1],
there exists a (unique) filled ellipsoid E(B) (which is
called the Loevner ellipsoid) that contains the body B
and has the smallest volume. Let Sg be a linear mapping
such that Sg(E(B)) is the unit ball. The required topo-
logical embedding ©: C(n)/GL(n) — C(n)/O(n) is
defined by the formula 6([Blgr,) = [Ss(B)lowm- The
inverse mapping (retraction) r: C(n)/O(n) —
C(n)/GL(n) is defined by r([Bl,)) = [BlgL- To the
O(n)-space C(n), Theorem (i) from the introduction
applies. Since B" is a fixed point of the action of O(n),
we have C(n) € O(n)-AE. By Theorem (ii) from the
introduction, we have C(n)/O(n) € AE.
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3. EQUIVARIANT EXTENSORS
"~ FOR LOCALLY COMPACT GROUPS

Theorem 3. If G is a locally compact Lie group and
X a convex G-space, then X is an equivariant absolute
neighborhood extensor in the class of proper G-spaces;
i.e., X € G-ANE.

The proof of Theorem 3 is based on replacing the
exact G-extension by an approximate one.

Definition 4. A closed subset F of a G-space Z cuts
this space if F is small in Z and intersects every orbit;
ie, FNGR)# @Y forallze Z.

Proposition 2. Ifa G-space Z is proper and space of
orbits Z|G is metrizable, then there exists a cutting set
FinZ.

In the class of metric G-spaces, the orbit projection
n: X = X/G of a proper G-space is generally not
closed.

Proposition 3. Ifthe conditions of Proposition 2 are
fulfilled, then

(a) the image n(F) of a small closed set F c Z is
closed in the space of orbits Z/ G,

(b) the restriction of & to a cutting set Fc Z is a
closed mapping.

Definition 5. A G-space X is called an approxima-
tive G-A[N]JE space (X € G-AA[N]E) if, for any
G-space Z from the class &, any closed small set F in
Z, and any cover ® € cov(X)), the following is true: any

partial G-mapping Z «> A 3 X has an approximative
G-continuation @: Z = X (¢: U — X, where U is a
G-neighborhood of A) such that the restrictions of ¢
and @ to A N F are w-close.

Theorem 4. Any convex G-space X is an approxi-
mative equivariant neighborhood extensor; i.e., X €
G-AANE.

Theorem 5. If the product of a G-space X and the
half-open interval J = {0, 1) is a G-AANE, then the fac-
tor X is a G-ANE-space.

Theorem 3 is obtained from the observation that the
product of the convex G-space X and the half-open
interval J is a convex G-space and, by virtue of Theo-
g,nA;,EX x J € G-AANE. Theorem 5 implies that X €

4. SPACES OF ORBITS
OF EQUIVARIANT ABSOLUTE EXTENSORS

Theorem 6. If G is a matrix group and X a proper
G-ANE-space, then the space of orbits X/G is an ANE.

First, we apply Theorems 1 and 3 to obtain the fol-
lowing preliminary result.

Proposition 4. Let H be a compact subgroup in a
matrix group G. Then G/H is a G-ANE-space.

Let X be a metric G-space of diameter 1. It is easy to
verify that the metric cone ConX = X x [0, 1)/, X x {0}
is a G-space.
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Proposition 5. If a metric G-space X is a G-ANE,
then the metric cone ConX is a G-AE.

Proposition 6. Let Z be a proper G-space. Then, for
any point z € Z and any € > 0, there exists a G-mapping
¢: Z = ConG(z) such that ¢(z) = z and

diam¢@™'((V-2)x(0,11)

for some neighborhood V
£ of the stabilizer G,6 G |

Proposition 7. Let G be a matrix group and X
belong to ©. Then there exist countably many finite-
dimensional G-ANE-spaces R,, k 2 1, of class © such

that the topological G-embedding i: X < HCon Ry
k=1
holds.
Proposition 8. Let a G-space H be the limit of an
inverse spectrum (H, & H, & H,; « ...} of G-spaces

H; and G-mappings q;. If the sets of fixed points H ,G are
no more than singletons for all i and the stabilizer G, of

any point h € H\H ,G is compact, then, for the space of
orbits, the homeomorphism

H/G = lim{H,/G & H,/)G & H,/Ge ..}

holds.

Proof of Theorem 6. Let us apply the condition of
the theorem and fix a topological G-embedding

it X o HCon Ry = D (see Proposition 7)

k=1

and a closed topological embedding j: X/G < L of the
space of orbits X/G into a linear normed space L.
Clearly, i x (j o ) = e: X =y L X D is a closed topolog-
ical G-embedding. Since the image e(X) contains no
points with noncompact stabilizers, e(X) does not inter-
sect the closed set L x {*}, where {*} is the product of
the vertices of the cones that are factors in D. Hence,
e(X) is contained in the proper open G-space U' = L X
(D\(*]).

Since L X D € G-AE by Propositions 4 and 5, we
have U' € G-ANE. Because X € G-ANE, there exists a
G-retraction r: U — X of some G-neighborhood U such
that e(X) c U c U'. Hence, r: U/G — X/G is a retrac-
tion, and the inclusion X/G € ANE reduces to the other
inclusion U/G € ANE.

Now, if we prove that D/G € AE, then we will have
(LxD)/G = L x (D/G) € AE and, hence, that U/G e
ANE as an open subset in the space of orbits. Thus, to
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complete the proof of Theorem 6, it remains to show
that D/G € AE.

PutD,, = HCon R, andletq,: D, ., = D,bea
k=1 ~

projection. Since R, = G(x,) is metrizable by a com-
plete invariant metric, ConR; and D,, are also metriz-
able by complete invariant metrics. Therefore, the
space of orbits D,,/G is metrizable by a complete met-
ric. The inclusion D, € G-AE and Proposition 10
imply that D,,/G € LC n C. By virtue of the finite
dimensionality of this space, we obtain D,, € AE.

Since ConR,,,, € AE, the projection gq,, is a fiber-
wise G-contractible mapping; i.e., there exist fiberwise
G-mappings s: D,, = D, ,, with g,° s = Id and
H:D, ., xI[0,1] - D,,, with g,,© H = g, such that
H; =1d and Im(H,) = Im(s). Passing to spaces of orbits, we
obtain fiberwise contractible mappings q,: D, /G —
D,/G; thus, g,, is a CE-mapping (the fiber g, is con-
tractible!). All conditions of the Curtis theorem [8] are
fulfilled; hence, lim{D,/G, q;} is an AE. By virtue of

Propositions 8, this inverse limit coincides with the
space of orbits D/G.

5. APPLICATIONS

The space C(n) of convex bodies is a convex GL(n)-
space. By virtue of Theorem 3, C(n) € GL(n)-ANE.
However, C(n) is additionally a proper space, which
implies that C(n) has the property of equivariant local
contractibility and, by virtue of the theorem, that
Q(n) e AE.

Prpposition 9. C(n) is a proper GL(n)-space.
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Proposition 10. If X is a proper G-ANE-space,
then, for any G-neighborhood U of the orbit G(x), there
exists a G-neighborhood V and a G-mapping H: V x
[0, 1} — U such that Hy = 1d; Im(H,) < G(x), and H, T
Gx)=Idforallte I.

We call a Banach space nonsymmetric if the sym-
metry group of its unit ball centered at O is {Id, -Id}.
Let Qy(n) denote the open dense subset of Q(n) formed
by the classes of isomeric nonsymmetric n-dimensional
Banach spaces.

Theorem 7. Qy(n) is a variety modeled by the Hil-
bert cube.
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