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Abstract. We consider the following (p, q)-Laplacian Kirchhoff type problem

−
(

a + b

∫
R3

|∇u|p dx

)
�pu −

(
c + d

∫
R3

|∇u|q dx

)
�qu

+ V (x)
(|u|p−2u + |u|q−2u

) = K(x)f (u) in R
3,

where a, b, c, d > 0 are constants, 3
2 < p < q < 3, V : R3 → R and K : R3 → R are positive continuous functions allowed

for vanishing behavior at infinity, and f is a continuous function with quasicritical growth. Using a minimization argument and
a quantitative deformation lemma we establish the existence of nodal solutions.
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1. Introduction

This paper deals with the existence of least energy nodal solutions for the following class of quasilinear
problems

−
(

a + b

∫
R3

|∇u|p dx

)
�pu −

(
c + d

∫
R3

|∇u|q dx

)
�qu

+ V (x)
(|u|p−2u + |u|q−2u

) = K(x)f (u) in R
3, (1.1)

where a, b, c, d > 0 are constants, 3
2 < p < q < 3, V : R

3 → R and K : R
3 → R are positive

functions, and f is a continuous function with quasicritical growth.
In recent years, a considerable interest has been devoted to the study of this general class of problems

due to the fact that they arise in applications in physics and related sciences.
When a = c = 1 and b = d = 0, equation (1.1) becomes a (p, q)-Laplacian problem of the type

−�pu − �qu + V (x)
(|u|p−2u + |u|q−2u

) = K(x)f (u) in R
3. (1.2)
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As underlined in [27], this equation is related to the more general reaction-diffusion system

ut = div
(
D(u)∇u

) + c(x, u) and D(u) = |∇u|p−2 + |∇u|q−2,

which appears in plasma physics, biophysics and chemical reaction design.
In these applications, u represents a concentration, div(D(u)∇u) is the diffusion with the diffusion

coefficient D(u), and the reaction term c(x, u) relates to source and loss processes. Usually, the reaction
term c(x, u) is a polynomial of u with variable coefficient (see [27]). This kind of problem has been
widely investigated by many authors, see for instance [27,31,32,39,42–44,46] and the references therein.
In particular, in [17], using a minimization argument and a quantitative deformation lemma, the authors
proved the existence of nodal solutions for the following class of (p, q) problems

− div
(
a
(|∇u|p)|∇u|p−2∇u

) + V (x)b
(|u|p)|u|p−2u = K(x)f (u) in R

N,

where N � 3, 2 � p < N , a, b, f ∈ C1(R), and V, K are continuous and positive functions (see also
[16]).

We stress that in the nonlocal framework, only few recent works deal with the fractional (p, q)-
Laplacian. In [25] the authors established the existence, nonexistence and multiplicity for a nonlocal
(p, q)-subcritical problem. Ambrosio [7] obtained an existence result for a critical fractional (p, q)-
problem via mountain pass theorem. In [21] the authors investigated the existence of infinitely many
nontrivial solutions for a class of fractional (p, q)-equations involving concave-critical nonlinearities in
bounded domains. Hölder regularity result for nonlocal double phase equations has been established in
[29]. Applying suitable variational and topological arguments, in [12] the authors obtained a multiplicity
and concentration result for a class of fractional problems with unbalanced growth. We also mention
[1,11,36] for other interesting results.

We underline that there is a huge bibliography concerning the nonlinear Schrödinger equation (that is
when p = q = 2 in (1.2))

−�u + V (x)u = K(x)f (u) in R
3, (1.3)

and we would like to point out that an important class of problems associated with (1.3) is the so called
zero mass case, which occurs when the potential V vanishes at infinity. Using several variational meth-
ods, many authors attacked this equation; see for instance [2,3,5,6,18,19,22].

When a = c, b = d(�= 0) and p = q = 2, problem (1.1) becomes the following Kirchhoff equation

−
(

a + b

∫
R3

|∇u|2 dx

)
�u + V (x)u = f (x, u) in R

3. (1.4)

This problem is related to the stationary analogue of the Kirchhoff equation [41]

ρ
∂2u

∂t2
−

(
p0

h
+ E

2L

∫ L

0

∣∣∣∣∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0,

for all x ∈ (0, L) and t � 0. This equation is an extension of the classical D’Alembert wave equation
taking into account the changes in the length of the strings produced by transverse vibrations. In (1.4),
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u(x, t) is the lateral displacement of the vibrating string at the coordinate x and the time t , L is the length
of the string, h is the cross-section area, E is the Young modulus of the material, ρ is the mass density
and p0 is the initial axial tension.

The early studies dedicated to the Kirchhoff equation (1.4) were done by Bernstein [20] and Pohozaev
[50]. However, the Kirchhoff equation (1.4) began to attract the attention of more researchers only after
the work by Lions [45], in which the author introduced a functional analysis approach to study a general
Kirchhoff equation in arbitrary dimension with external force term. For more details on classical Kirch-
hoff problems we refer to [13,15,48,49]. In [34] the authors established the existence of a least energy
nodal solution to the following class of nonlocal Schrödinger–Kirchhoff problems

M

(∫
R3

|∇u|2 dx +
∫
R3

V (x)u2 dx

)(−�u + V (x)u
) = K(x)f (u) in R

3.

Moreover, when the problem presents symmetry, they proved the existence of infinitely many nontrivial
solutions. We also mention [30,33] where the existence of nodal solutions for problems like (1.4) has
been obtained.

In the nonlocal framework, Fiscella and Valdinoci [35] proposed the following stationary Kirchhoff
model driven by the fractional Laplacian

{
−M(

∫∫
R2N

|u(x)−u(y)|2
|x−y|N+2s dx dy)(−�)su = λf (x, u) + |u|2∗

s −2u in �,

u = 0 in R
N \ �,

(1.5)

where � ⊂ R
N is an open bounded set, 2∗

s = 2N
N−2s

, N > 2s, s ∈ (0, 1), M : R+ → R
+ is an increasing

continuous function which behaves like M(t) = a + bt , with b � 0, and f is a continuous function.
Based on a truncation argument and the mountain pass theorem, the authors established the existence
of a non-negative solution to (1.5) for any λ > λ∗ > 0, where λ∗ is an appropriate threshold. We
also mention [8–10,14,47,51] in which the authors dealt with existence and multiplicity of solutions for
(1.5), while concerning the existence and multiplicity of sign-changing solutions for fractional Kirchhoff
problems only few results appear in the literature [24,26,40].

Finally, if a = c, b = d(�= 0) and p = q �= 2, we have the following p-Laplacian Kirchhoff-type
equation

−
(

a + b

∫
R3

|∇u|p dx

)
�pu + V (x)|u|p−2u = f (x, u) in R

3. (1.6)

Very recently, in [38] using a minimization argument and the Nehari manifold method, the authors
investigated the existence of least energy nodal (or sign-changing) solutions to (1.6). We also mention
[23,28,37,55] for results regarding Schrö dinger–Kirchhoff equations involving the p-Laplacian.

Motivated by the interest shared by the mathematical community toward (p, q)-Laplacian problems,
the goal of the present paper is to study the existence of nodal solutions to (1.1). In order to state
precisely our main result, we first introduce the main assumptions on the potentials V and K and on the
nonlinearity f .

We assume that V, K : R3 → R are continuous functions and we say that (V , K) ∈ K if the following
conditions are satisfied (see [3]):
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(V K1) V (x),K(x) > 0 for all x ∈ R
3 and K ∈ L∞(R3);

(V K2) If (An) ⊂ R
3 is a sequence of Borel sets such that the Lebesgue measure |An| � R, for all

n ∈ N and for some R > 0, then

lim
r→∞

∫
An∩Bc

�(0)

K(x) dx = 0,

uniformly in n ∈ N, where Bc
�(0) := R

3 \ B�(0).

Furthermore, one of the following conditions is satisfied:

(V K3)
K
V

∈ L∞(R3);

or

(V K4) There exists m ∈ (q, q∗) such that

K(x)

V (x)
q∗−m

q∗−p

→ 0 as |x| → ∞.

Let us point out that the hypotheses on the functions V and K characterize problem (1.1) as a zero
mass problem.

Regarding the nonlinearity f , we assume that f ∈ C(R,R) and f fulfills the following conditions:

(f1) lim|t |→0
f (t)

|t |2p−1 = 0 if (V K3) holds,

(f̃1) lim|t |→0
f (t)

|t |m−1 = 0 if (V K4) holds, with m ∈ (q, q∗) defined in (V K4),

(f2) lim|t |→∞ f (t)

|t |q∗−1 = 0,

(f3) limt→∞ F(t)

t2q = ∞, where F(t) := ∫ t

0 f (τ) dτ ,

(f4) The map t 
→ f (t)

|t |2q−1 is strictly increasing for all |t | > 0.

We note that from assumption (f4) it follows that t 
→ 1
2q

f (t)t −F(t) is increasing for t � 0 and also

that t 
→ 1
2q

f (t)t − F(t) is decreasing for t � 0 (see Remark 2.1 below).
Our main result can be stated as follows:

Theorem 1.1. Assume that (V , K) ∈ K and f satisfies conditions (f1) (or (f̃1)) and (f2)–(f4). Then
problem (1.1) admits a least energy sign-changing weak solution. If in addition, f is an odd function,
then (1.1) has infinitely many nontrivial solutions.

A weak solution of problem (1.1) is a function u ∈ E such that

a

∫
R3

|∇u|p−2∇u · ∇ϕ dx + b

(∫
R3

|∇u|p dx

)∫
R3

|∇u|p−2∇u · ∇ϕ dx

+ c

∫
R3

|∇u|q−2∇u · ∇ϕ dx + d

(∫
R3

|∇u|q dx

)∫
R3

|∇u|q−2∇u · ∇ϕ dx

+
∫
R3

V (x)
(|u|p−2uϕ + |u|q−2uϕ

)
dx −

∫
R3

K(x)f (u)ϕ dx = 0 (1.7)
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for all ϕ ∈ E, where

E =
{
u ∈ D1,p

(
R

3
) ∩ D1,q

(
R

3
) :

∫
R3

V (x)
(|u|p + |u|q) dx < ∞

}
.

By a sign-changing weak solution to problem (1.1) we mean a function u ∈ E that satisfies (1.7) with
u+ = max{u, 0} �= 0 and u− = min{u, 0} �= 0.

The proof of Theorem 1.1 is achieved by using suitable variational techniques inspired by [4,16,17,
34]. In order to study (1.1) we consider the following functional I : E → R given by

I(u) = a

p

∫
R3

|∇u|p dx + b

2p

(∫
R3

|∇u|p dx

)2

+ c

q

∫
R3

|∇u|q dx + d

2q

(∫
R3

|∇u|q dx

)2

+
∫
R3

V (x)

(
1

p
|u|p + 1

q
|u|q

)
dx −

∫
R3

K(x)F (u) dx.

It is easy to check that I ∈ C1(E,R) and its differential is given by

〈
I ′(u), ϕ

〉 = a

∫
R3

|∇u|p−2∇u · ∇ϕ dx + b

(∫
R3

|∇u|p dx

)∫
R3

|∇u|p−2∇u · ∇ϕ dx

+ c

∫
R3

|∇u|q−2∇u · ∇ϕ dx + d

(∫
R3

|∇u|q dx

) ∫
R3

|∇u|q−2∇u · ∇ϕ dx

+
∫
R3

V (x)
(|u|p−2uϕ + |u|q−2uϕ

)
dx −

∫
R3

K(x)f (u)ϕ dx.

Then, we define the nodal set

M = {
w ∈ N : w± �= 0,

〈
I ′(w), w+〉 = 〈

I ′(w), w−〉 = 0
}
,

where

N = {
u ∈ E \ {0} : 〈

I ′(u), u
〉 = 0

}
.

In order to get least energy nodal (or sign-changing) solutions to (1.1), we minimize the functional I on
the nodal set M. Then we prove that the minimum is achieved and, by using a variant of the quantitative
deformation lemma, we show that it is a critical point of I. Finally, when the nonlinearity f is odd, we
obtain the existence of infinitely many nontrivial weak solutions not necessarily nodals. We point out
that our paper extends the results obtained in [34,38].

Problem (1.1) is called nonlocal due to the presence of the Kirchhoff term (
∫
R3 |∇u|p dx)�pu, this

causes some mathematical difficulties which makes the study of such a class of problems particularly in-
teresting. We underline that here we are considering the sum of two Kirchhoff terms: (

∫
R3 |∇u|p dx)�pu

and (
∫
R3 |∇u|q dx)�qu, with p < q. Moreover, due to the fact that the nonlinearity f is only continu-

ous, one cannot apply standard C1-Nehari manifold arguments due to the lack of differentiability of the
associated Nehari manifold N . We were able to overcome this difficulty by borrowing some abstract



AUTHOR  C
OPY

376 T. Isernia and D.D. Repovš / Double phase Kirchhoff problems with vanishing potentials

critical point results obtained in [53]. Furthermore, to produce nodal solutions, instead of using the Mi-
randa Theorem to get critical points of gu(ξ, λ) = I(ξu+ + λu−) we use an iterative process to build a
sequence which converges to a critical point of gu(ξ, λ).

The paper is organized as follows. In Section 2 we introduce the variational structure. In Section 3
we give some preliminary results which overcome the lack of differentiability of the Nehari manifold.
Section 4 is devoted to some technical lemmas used in the proof of the main result. In Section 5 we
prove Theorem 1.1.

1.1. Notations

We denote by BR(x) the ball of radius R with center x and we set Bc
R(x) = R

3\BR(x). Let 1 � r � ∞
and A ⊂ R

3. We denote by |u|Lr(A) the Lr(A)-norm of the function u : R3 → R belonging to Lr(A).
When A = R

3, we shall simply write |u|r .

2. Variational framework

Let us introduce the space

E =
{
u ∈ D1,p

(
R

3
) ∩ D1,q

(
R

3
) :

∫
R3

V (x)
(|u|p + |u|q) dx < ∞

}

endowed with the norm

‖u‖ =
(∫

R3

(
a|∇u|p + V (x)|u|p)

dx

) 1
p

+
(∫

R3

(
c|∇u|q + V (x)|u|q) dx

) 1
q

.

Let us define the Lebesgue space

Lr
K

(
R

3
) =

{
u : R3 → R : u is measurable and

∫
R3

K(x)|u|r dx < ∞
}

equipped with the norm

‖u‖Lr
K(R3) =

(∫
R3

K(x)|u|r dx

) 1
r

.

We recall the following continuous and compactness results whose proofs can be found in [17]:

Lemma 2.1. Assume that (V , K) ∈ K.

(i) If (V K3) holds, then E is continuously embedded in Lr
K(R3) for every r ∈ [q, q∗].

(ii) If (V K4) holds, then E is continuously embedded in Lm
K(R3).

Lemma 2.2. Assume that (V , K) ∈ K.

(i) If (V K3) holds, then E is compactly embedded in Lr
K(R3) for every r ∈ (q, q∗).
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(ii) If (V K4) holds, then E is compactly embedded in Lm
K(R3).

The last lemma of this section is a compactness result related to the nonlinearity (see [17]).

Lemma 2.3. Assume that (V , K) ∈ K and f satisfies (f1)–(f2) or (f̃1)–(f2). If (un) is a sequence such
that un ⇀ u in E, then∫

R3
K(x)F (un) dx →

∫
R3

K(x)F (u) dx

and ∫
R3

K(x)f (un)un dx →
∫
R3

K(x)f (u)u dx.

We conclude this section by giving the following useful remarks.

Remark 2.1. Let us point out that from assumption (f4) it follows that t 
→ 1
2q

f (t)t −F(t) is increasing
for t � 0. Indeed, let 0 < t2 < t1, then using (f4) twice we get

1

2q
f (t1)t1 − F(t1) = 1

2q
f (t1)t1 − F(t2) −

∫ t1

t2

f (τ) dτ

= 1

2q
f (t1)t1 − F(t2) −

∫ t1

t2

f (τ)

τ 2q−1
τ 2q−1 dτ

>
1

2q
f (t1)t1 − F(t2) − f (t1)

t
2q−1
1

∫ t1

t2

τ 2q−1 dτ

= 1

2q
f (t1)t1 − F(t2) − f (t1)

t
2q−1
1

t
2q

1 − t
2q

2

2q

= 1

2q

f (t1)

t
2q−1
1

t
2q

2 − F(t2)

>
1

2q
f (t2)t2 − F(t2).

Similarly, it is possible to prove that t 
→ 1
2q

f (t)t − F(t) is decreasing for t � 0.

Remark 2.2. Take u ∈ E with u± �= 0 and ξ, λ � 0, then∣∣∇(
ξu+ + λu−)∣∣p = ∣∣∇(

ξu+)∣∣p + ∣∣∇(
λu−)∣∣p

and using the linearity of F and the positivity of K we also have∫
R3

K(x)F
(
ξu+ + λu−)

dx =
∫
R3

K(x)
(
F

(
ξu+) + F

(
λu−))

dx.
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Hence, for any u ∈ E with u± �= 0 and ξ, λ � 0 we have

I
(
ξu+ + λu−) = I

(
ξu+) + I

(
λu−)

. (2.1)

Moreover,

〈
I ′(ξu+ + λu−)

, ξu+〉 = ξp

∫
R3

(
a
∣∣∇u+∣∣p + V (x)|u|p)

dx + bξ 2p

(∫
R3

∣∣∇u+∣∣p dx

)2

+ ξq

∫
R3

(
c
∣∣∇u+∣∣q + V (x)|u|q) dx + dξ 2q

(∫
R3

∣∣∇u+∣∣q dx

)2

−
∫
R3

K(x)f
(
ξu+)

ξu+ dx

and

〈
I ′(ξu+ + λu−)

, ξu+〉 = λp

∫
R3

(
a
∣∣∇u−∣∣p + V (x)|u|p)

dx + bλ2p

(∫
R3

∣∣∇u−∣∣p dx

)2

+ λq

∫
R3

(
c
∣∣∇u−∣∣q + V (x)|u|q) dx + dλ2q

(∫
R3

∣∣∇u−∣∣q dx

)2

−
∫
R3

K(x)f
(
λu−)

λu− dx.

3. Preliminaries

The Nehari manifold associated with I is given by

N = {
u ∈ E \ {0} : 〈

I ′(u), u
〉 = 0

}
.

We denote by

M = {
w ∈ N : w± �= 0,

〈
I ′(w), w+〉 = 〈

I ′(w), w−〉 = 0
}
,

and by S the unit sphere on E. We note that M ⊂ N .
Once f is only continuous, the following results are crucial, since they allow us to overcome the

non-differentiability of N .

Lemma 3.1. Suppose that (V , K) ∈ K and f satisfies conditions (f1) − (f4). Then the following
properties hold:

(a) For each u ∈ E \ {0}, let ϕu : R+ → R be defined by

ϕu(t) = I(tu).
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Then there is a unique tu > 0 such that

ϕ′
u(t) > 0 for t ∈ (0, tu) and ϕ′

u(t) < 0 for t ∈ (tu, ∞);

(b) There is τ > 0, independent of u, such that tu � τ for every u ∈ S. Moreover, for each compact
set K ⊂ S, there is CK > 0 such that tu � CK for every u ∈ K;

(c) The map m̂ : E\{0} → N given by m̂(u) := tuu is continuous and m := m̂|S is a homeomorphism
between S and N . Moreover, m−1(u) = u

‖u‖ .

Proof. (a) Let us assume that (V K3) holds. Then, using assumptions (f1)–(f2) given ε > 0 there exists
Cε > 0 such that∣∣f (t)

∣∣ � ε|t |p−1 + Cε|t |q∗−1.

Therefore

I(tu) � a

p
tp

∫
R3

|∇u|p dx + c

q
tq

∫
R3

|∇u|q dx +
∫
R3

V (x)

(
tp

p
|u|p + tq

q
|u|q

)
dx

− εtp
∫
R3

K(x)|u|p dx − Cεt
q∗

∫
R3

K(x)|u|q∗
dx

� a

p
tp

∫
R3

|∇u|p dx + c

q
tq

∫
R3

|∇u|q dx +
∫
R3

V (x)

(
tp

p
|u|p + tq

q
|u|q

)
dx

− ε

∣∣∣∣KV
∣∣∣∣∞tp

∫
R3

V (x)|u|p dx − C ′
ε|K|∞tq

∗‖u‖q∗

� a

p
tp

∫
R3

|∇u|p dx +
(

1

p
− ε

∣∣∣∣KV
∣∣∣∣∞

)
tp

∫
R3

V (x)|u|p dx

+ tq

q

∫
R3

(
c|∇u|q + V (x)|u|q) dx − C ′

ε|K|∞tq
∗‖u‖q∗

.

Choosing ε ∈ (0, (2p|K
V

|∞)−1), we get t0 > 0 sufficiently small such that

0 < ϕu(t) = I(tu) for all t ∈ (0, t0).

Now, we assume that (V K4) is true. Then, there exists a positive constant Cm such that, for each ε ∈
(0, Cm) we get R > 0 such that for any u ∈ E∫

Bc
R(0)

K(x)|u|m dx � ε

∫
Bc

R(0)

(
V (x)|u|p + |u|q∗)

dx.

Using assumptions (f̃1) and (f2), the Hölder and Sobolev inequality we get

I(tu) � a

p
tp

∫
R3

|∇u|p dx + c

q
tq

∫
R3

|∇u|q dx +
∫
R3

V (x)

(
tp

p
|u|p + tq

q
|u|q

)
dx
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− C1t
m

(∫
BR(0)

K(x)|u|m dx +
∫
Bc

R(0)

K(x)|u|m dx

)
− C2t

q∗
∫
R3

K(x)|u|q∗
dx

� a

p
tp

∫
R3

|∇u|p dx + c

q
tq

∫
R3

|∇u|q dx +
∫
R3

V (x)

(
tp

p
|u|p + tq

q
|u|q

)
dx

− C1t
m|K| q∗

q∗−m

|u|mq∗ − C1t
mε

∫
Bc

R(0)

(
V (x)|u|p + |u|q∗)

dx − C ′
2t

q∗ |K|∞‖u‖q∗

� a

p
tp

∫
R3

|∇u|p dx + c

q
tq

∫
R3

|∇u|q dx +
∫
R3

V (x)

(
tp

p
|u|p + tq

q
|u|q

)
dx

− C ′
2t

q∗ |K|∞‖u‖q∗ − C̃tm
[|K| q∗

q∗−m

|u|mq∗ + ε‖u‖p + ε‖u‖q∗]
.

Therefore there exists t0 > 0 sufficiently small such that

0 < ϕu(t) = I(tu) for all t ∈ (0, t0).

Let A ⊂ supp u be a measurable set with finite and positive measure. From F(t) � 0 for any t ∈ R,
1 < p < q, and combining assumptions (f3) together with Fatou’s lemma, we obtain

lim sup
t→∞

I(tu)

‖tu‖2q

� lim sup
t→∞

{
1

p

1

t2q−p‖u‖2q−p
+ b

2p

1

t2(q−p)‖u‖2(q−p)
+ 1

q

1

tq‖u‖q
+ d

2q

−
∫

A

K(x)
F (tu)

(tu)2q

(
u

‖u‖
)2q

dx

}

� d

2q
− lim inf

t→∞

∫
A

K(x)
F (tu)

(tu)2q

(
u

‖u‖
)2q

dx � −∞.

Hence there exists t̄ > 0 large enough for which ϕu(t̄) < 0. By virtue of the continuity of ϕu and using
(f4), there exists tu > 0 which is a global maximum of ϕu with tuu ∈ N .

Next, we aim to prove that such tu is the unique critical point of ϕu. Assume by contradiction that
there exist 0 < t1 < t2 which are critical points of ϕu. Then, from the definition of ϕu we get

1

t
2q−p

1

∫
R3

(
a|∇u|p + V (x)|u|p)

dx + b

t
2(q−p)

1

(∫
R3

|∇u|p dx

)2

+ 1

t
q

1

∫
R3

(
c|∇u|q + V (x)|u|q) dx

+ d

(∫
R3

|∇u|q dx

)2

−
∫
R3

K(x)
f (t1u)

(t1u)2q−1
u2q dx = 0

and

1

t
2q−p

2

∫
R3

(
a|∇u|p + V (x)|u|p)

dx + b

t
2(q−p)

2

(∫
R3

|∇u|p dx

)2

+ 1

t
q

2

∫
R3

(
c|∇u|q + V (x)|u|q) dx
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+ d

(∫
R3

|∇u|q dx

)2

−
∫
R3

K(x)
f (t2u)

(t2u)2q−1
u2q dx = 0.

These equalities together with assumption (f4) imply that

0 >

(
1

t
2q−p

2

− 1

t
2q−p

1

)∫
R3

(
a|∇u|p + V (x)|u|p)

dx + b

(
1

t
2(q−p)

2

− 1

t
2(q−p)

1

)(∫
R3

|∇u|p dx

)2

+
(

1

t
q

2

− 1

t
q

1

)∫
R3

(
c|∇u|q + V (x)|u|q) dx

=
∫
R3

K(x)

(
f (t2u)

(t2u)2q−1
− f (t1u)

(t1u)2q−1

)
u2q dx � 0

which leads to a contradiction.
(b) By (a) there exists tu > 0 such that ϕ′

u(tu) = 0, or equivalently 〈I ′(tuu), tuu〉 = 0, and arguing as
before, we find a positive τ independent of u such that tu � τ .

Now, let K ⊂ S be a compact set and assume by contradiction that there exists (un) ⊂ K such that
tun

→ ∞. Hence, there exists u ∈ K such that un → u in E. Proceeding as in (a) we can prove that
I(tun

un) → −∞ in R. Since tun
un ∈ N , from Remark 2.1 and recalling that 1 < p < q we get

I(tun
un) = I(tun

un) − 1

2q

〈
I ′(tun

un), tun
un

〉

=
(

1

p
− 1

2q

)
tpun

∫
R3

(
a|∇un|p + V (x)|un|p

)
dx + b

2

(
1

p
− 1

q

)
t2p
un

(∫
R3

∣∣∇(un)
∣∣p dx

)2

+ 1

2q
tqun

∫
R3

(
c|∇un|q + V (x)|un|q

)
dx

+
∫
R3

K(x)

[
1

2q
f (tun

un)tun
un − F(tun

un)

]
dx � 0,

which leads to a contradiction.
(c) Note that m̂, m and m−1 are well defined. In fact, from (a) we deduce that for each u ∈ E \ {0}

there exists a unique m̂(u) ∈ N .
On the other hand, if u ∈ N then u �= 0, and we deduce that m−1(u) = u

‖u‖ ∈ S and m−1 is well
defined. We point out that

m−1
(
m(u)

) = m−1(tuu) = tuu

‖tuu‖ = u for any u ∈ S,

m
(
m−1(u)

) = m

(
u

‖u‖
)

= t u
‖u‖

u

‖u‖ = u for any u ∈ N ,

so m is bijective with its inverse m−1 continuous.
Now, let (un) ⊂ E and u ∈ E \ {0} such that un → u in E. Using (b) we can find t0 > 0 such that

tun
‖un‖ = t u

‖u‖ → t0. Therefore tun
→ t0

‖u‖ . Using the fact that tun
un ∈ N and taking the limit as n → ∞
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we deduce that t0
‖u‖u ∈ N and tu = t0

‖u‖ . This implies that m̂(un) → m̂(u), hence m̂ and m are continuous
functions. �

Let us define the maps

ψ̂ : E → R and ψ : S → R,

by ψ̂(u) := I(m̂(u)) and ψ := ψ̂ |S.
The next result is a consequence of Lemma 2.1 (see [53]).

Proposition 3.1. Suppose that (V , K) ∈ K and f fulfills (f1) − (f4). Then the following properties
hold:

(a) ψ̂ ∈ C1(E \ {0},R) and

〈
ψ̂ ′(u), v

〉 = ‖m̂(u)‖
‖u‖

〈
I ′(m̂(u)

)
, v

〉
for all u ∈ E \ {0} and v ∈ E;

(b) ψ ∈ C1(S,R) and 〈ψ ′(u), v〉 = ‖m(u)‖〈I ′(m(u)), v〉, for every v ∈ TuS;
(c) If (un) is a (PS)d sequence for ψ , then {m(un)}n∈N is a (PS)d sequence for I. Moreover, if (un) ⊂

N is a bounded (PS)d sequence for I, then {m−1(un)}n∈N is a (PS)d sequence for the functional
ψ;

(d) u is a critical point of ψ if and only if m(u) is a nontrivial critical point for I. Moreover, the
corresponding critical values coincide and

inf
u∈S

ψ(u) = inf
u∈N

I(u).

We notice that the following equalities hold:

d∞ := inf
u∈N

I(u) = inf
u∈E\{0}

max
t>0

I(tu) = inf
u∈S

max
t>0

I(tu). (3.1)

In particular, from (a) of Lemma 2.1 and (3.1) it follows that

d∞ > 0. (3.2)

4. Technical lemmas

For each u ∈ E with u± �= 0, let us introduce the map gu : [0, ∞) × [0, ∞) → R defined by

gu(ξ, λ) = I
(
ξu+ + λu−)

.

Lemma 4.1. Suppose that (V , K) ∈ K and f fulfills (f1)–(f4). Then the following properties hold:

(i) The pair (ξ, λ) is a critical point of gu with ξ, λ > 0 if and only if ξu+ + λu− ∈ M.
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(ii) The map gu has a unique critical point (ξ+, λ−), with ξ+ = ξ+(u) > 0 and λ− = λ−(u) > 0
which is the unique global maximum point of gu.

(iii) The maps a+(r) := ∂gu

∂ξ
(r, λ−) and a−(r) := ∂gu

∂λ
(ξ+, r)r are such that a+(r) > 0 if r ∈ (0, ξ+),

a+(r) < 0 if r ∈ (ξ+, ∞), a−(r) > 0 if r ∈ (0, λ−) and a−(r) < 0 if r ∈ (λ−, ∞).

Proof. (i) Let us point out that the gradient of gu is given by

∇gu(ξ, λ) =
(

∂gu

∂ξ
(ξ, λ),

∂gu

∂λ
(ξ, λ)

)

= (〈
I ′(ξu+ + λu−)

, u+〉
,
〈
I ′(ξu+ + λu−)

, u−〉)
=

(
1

ξ

〈
I ′(ξu+ + λu−)

, ξu+〉
,

1

λ

〈
I ′(ξu+ + λu−)

, λu−〉)
.

Now, the pair (ξ, λ), with ξ, λ > 0, is a critical point of gu if and only if

〈
I ′(ξu+ + λu−)

, ξu+〉 = 0 and
〈
I ′(ξu+ + λu−)

, λu−〉 = 0

that is ξu+ + λu− ∈ M.
(ii) First we prove that M �= ∅. For each u ∈ E with u± �= 0 and λ0 fixed, let us define the function

g1(ξ) : [0, ∞) → [0, ∞) by g1(ξ) = gu(ξ, λ0).
As in Lemma 2.1, the map g1 has a maximum positive point and furthermore there exists ξ0 =

ξ0(u, λ0) > 0 such that g′
1(ξ) > 0 for ξ ∈ (0, ξ0), g′

1(ξ) < 0 for ξ ∈ (ξ0, ∞) and g′
1(ξ0) = 0.

Hence, it is well defined the function η1 : [0, ∞) → [0, ∞) defined by η1(λ) := ξ(u, λ), where
ξ(u, λ) satisfies the properties just mentioned with λ in place of λ0. Exploiting the definition of g1, for
all λ � 0 we get

g′
1

(
η1(λ)

) = ∂gu

∂ξ

(
η1(λ), λ

) = 〈
I ′(η1(λ)u+ + λu−)

, η1(λ)u+〉 = 0. (4.1)

Note that, when u± �= 0 and the support of u+ and u− are disjoint in R
3, it follows that (4.1) is equivalent

to

η1(λ)p

∫
R3

(
a
∣∣∇u+∣∣p + V (x)

∣∣u+∣∣p)
dx + bη1(λ)2p

(∫
R3

∣∣∇u+∣∣p dx

)2

+ η1(λ)q

∫
R3

(
c
∣∣∇u+∣∣q + V (x)

∣∣u+∣∣q) dx + dη1(λ)2q

(∫
R3

∣∣∇u+∣∣q dx

)2

=
∫
R3

K(x)f
(
η1(λ)u+)

η1(λ)u+ dx. (4.2)

First we note that η1 is a continuous map. Indeed, let (λn) be a sequence such that λn → λ0 as n → ∞ in
R, and assume that η1(λn) → ∞ as n → ∞. We aim to prove that (η1(λn)) is bounded. By contradiction,
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let us suppose that there us a subsequence, still denoted by (λn), such that η1(λn) → ∞ as n → ∞. In
particular, for n sufficiently large we have that η1(λn) � λn. From (4.2) we get

1

η1(λn)2q−p

∫
R3

(
a
∣∣∇u+∣∣p + V (x)

∣∣u+∣∣p)
dx + b

η1(λn)2(q−p)

(∫
R3

∣∣∇u+∣∣p dx

)2

+ 1

η1(λn)q

∫
R3

(
c
∣∣∇u+∣∣q + V (x)

∣∣u+∣∣q) dx + d

(∫
R3

∣∣∇u+∣∣q dx

)2

=
∫
R3

K(x)
f (η1(λn)u

+)

(η1(λn)u+)2q−1

(
u+)2q

dx,

recalling that η1(λn) → ∞ as n → ∞, λn → λ0 as n → ∞ and exploiting (f3), (f4) and Fatou’s
lemma, we get a contradiction. This shows that (η1(λn)) is bounded. So there exists ξ0 � 0 such that
η1(λn) → ξ0 as n → ∞. Now, using (4.2) with λ = λn and taking n → ∞ we deduce

ξ
p

0

∫
R3

(
a
∣∣∇u+∣∣p + V (x)

∣∣u+∣∣p)
dx + bξ

2p

0

(∫
R3

∣∣∇u+∣∣p dx

)2

+ ξ
q

0

∫
R3

(
c
∣∣∇u+∣∣q + V (x)

∣∣u+∣∣q) dx + dξ
2q

0

(∫
R3

∣∣∇u+∣∣q dx

)2

=
∫
R3

K(x)f
(
ξ0u

+)
ξ0u

+ dx

that is

g′
1(ξ0) = ∂gu

∂ξ
(ξ0, λ0) = 0.

Hence, ξ0 = η1(λ0) which implies that η1 is a continuous map.
Moreover, η1(0) > 0. Indeed, if we suppose by contradiction that there exists a sequence (λn) such

that η1(λn) → 0+ and λn → 0 as n → ∞, then gathering (4.2) with (f1) we get

d

(∫
R3

∣∣∇u+∣∣q dx

)2

�
∫
R3

K(x)
f (η1(λn)u

+)

(η1(λn)u+)2q−1

(
u+)2q

dx → 0,

which gives a contradiction. Finally, we can also see that η1(λ) � s for s sufficiently large.
In a similar fashion, for each ξ0 � 0 we define g2(λ) = gu(ξ0, λ), and we can introduce a map η2 that

satisfies the same properties as η1. In particular, there exists a positive constant A1 such that for each
ξ, λ � A1 it holds that η1(λ) � λ and η2(ξ) � ξ .

Let A2 := max{maxλ∈[0,A1] η1(λ), maxξ∈[0,A1] η2(ξ)} and set A := max{C1, C2}.
Next, we introduce the map � : [0, A] × [0, A] → R

2 defined by �(ξ, λ) = (η1(λ), η2(ξ)). First we
note that � is a continuous map due to the continuity of η1 and η2, moreover for every s ∈ [0, A] we
can see that

if λ � A1 then η1(λ) � λ � A
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if λ � A1 then η1(λ) � max
λ∈[0,A1]

η1(λ) � A2 � A

and similarly

if ξ � A1 then η2(ξ) � t � A,

if ξ � A1 then η2(ξ) � max
ξ∈[0,A1]

η1(ξ) � A2 � A,

hence �([0, A] × [0, A]) ⊂ [0, A] × [0, A]. Applying Brouwer’s fixed point theorem there exists
(ξ+, λ−) ∈ [0, A] × [0, A] such that

�(ξ+, λ−) = (
η1(s−), η2(t+)

) = (ξ+, λ−).

Since η1, η2 are positive functions, ξ+, λ− > 0. In addition ∇gu(ξ+, λ−) = 0, hence (ξ+, λ−) is a critical
point of gu.

Next, we show the uniqueness of (ξ+, λ−). First, take w ∈ M. By w = w+ +w− and the definition of
gw it follows that ∇gw(1, 1) = (0, 0), hence (1, 1) is a critical point of gw. Our aim is to show that (1, 1)

is the unique critical point of gw with positive coordinates. With this goal, let (ξ0, λ0) be a critical point
go gw with 0 < ξ0 � λ0. Using ∂gw

∂ξ
(ξ0, λ0) = 0, which is equivalent to 〈I ′(ξ0w

+ + λ0w
−), ξ0w

+〉 = 0,
we can see that

1

ξ
2q−p

0

∫
R3

(
a
∣∣∇w+∣∣p + V (x)

∣∣w+∣∣p)
dx + b

ξ
2(q−p)

0

(∫
R3

∣∣∇w+∣∣p dx

)2

+ 1

ξ
q

0

∫
R3

(
c
∣∣∇w+∣∣q + V (x)

∣∣w+∣∣q) dx + d

(∫
R3

∣∣∇w+∣∣q dx

)2

=
∫
R3

K(x)
f (ξ0w

+)

(ξ0w+)2q−1

(
w+)2q

dx.

Exploiting the fact that w ∈ M we have

∫
R3

(
a
∣∣∇w+∣∣p + V (x)

∣∣w+∣∣p)
dx + b

(∫
R3

∣∣∇w+∣∣p dx

)2

+
∫
R3

(
c
∣∣∇w+∣∣q + V (x)

∣∣w+∣∣q) dx + d

(∫
R3

∣∣∇w+∣∣q dx

)2

=
∫
R3

K(x)f
(
w+)

w+ dx

and subtracting we have

(
1

ξ
2q−p

0

− 1

) ∫
R3

(
a
∣∣∇w+∣∣p + V (x)

∣∣w+∣∣p)
dx + b

(
1

ξ
2q−2p

0

− 1

)(∫
R3

∣∣∇w+∣∣p dx

)2
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+
(

1

ξ
q

0

− 1

) ∫
R3

(
c
∣∣∇w+∣∣q + V (x)

∣∣w+∣∣q) dx

=
∫
R3

K(x)

(
f (ξ0w

+)

(ξ0w+)2q−1
− f (w+)

(w+)2q

)(
w+)2q

dx. (4.3)

Using (4.3) and (f4) we get ξ0 � 1.
Similarly, from ∂gw

∂λ
(ξ0, λ0) = 0 we obtain

1

λ
2q−p

0

∫
R3

(
a
∣∣∇w−∣∣p + V (x)

∣∣w−∣∣p)
dx + b

λ
2(q−p)

0

(∫
R3

∣∣∇w−∣∣p dx

)2

+ 1

λ
q

0

∫
R3

(
c
∣∣∇w−∣∣q + V (x)

∣∣w−∣∣q) dx + d

(∫
R3

∣∣∇w−∣∣q dx

)2

=
∫
R3

K(x)
f (λ0w

−)

(λ0w−)2q−1

(
w−)2q

dx.

Note that from w ∈ M we also deduce that

∫
R3

(
a
∣∣∇w−∣∣p + V (x)

∣∣w−∣∣p)
dx + b

(∫
R3

∣∣∇w−∣∣p dx

)2

+
∫
R3

(
c
∣∣∇w−∣∣q + V (x)

∣∣w−∣∣q) dx + d

(∫
R3

∣∣∇w−∣∣q dx

)2

=
∫
R3

K(x)f
(
w−)

w− dx.

Subtracting these last two equality and using assumption (f4) we get 0 < ξ0 � λ0 � 1. Hence ξ0 =
λ0 = 1, this shows that (1, 1) is the unique critical point of gw with positive coordinates.

Next, take u ∈ E such that u± �= 0. Let (ξ1, λ1) and (ξ2, λ2) be two critical points of gu such that
ξi, λi > 0 for i = 1, 2. Define

U1 = ξ1u
+ + λ1u

− and U2 = ξ2u
+ + λ2u

−.

Then we have that U1, U2 ∈ M and U±
1 �= 0. Furthermore, recalling that ξ1, λ1 > 0 we have

ξ2

ξ1
U+

1 + λ2

λ1
U−

1 = ξ2

ξ1
ξ1u

+ + λ2

λ1
λ1u

− = ξ2u
+ + λ2u

− = U2 ∈ M

hence from (i) we deduce that (
ξ2
ξ1

, λ2
λ1

) is a critical point of gU1 . Due to the fact that U1 ∈ M we infer

that ξ2
ξ1

= λ2
λ1

= 1, that is ξ1 = ξ2 and λ1 = λ2, from which follows the uniqueness.
Now we prove that gu has a maximum global point. Let �+ ⊂ supp u+ and �− ⊂ supp u− be positive

with finite measure. Gathering (2.1) with (f3) and Fatou’s lemma we get

gu(ξ, λ) = I
(
ξu+) + I

(
λu−)
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=
{
ξp

∫
R3

(
a
∣∣∇u+∣∣p + V (x)

∣∣u+∣∣p)
dx + b

2p
ξ 2p

(∫
R3

∣∣∇u+∣∣p dx

)2

+ ξq

∫
R3

(
c
∣∣∇u+∣∣q + V (x)

∣∣u+∣∣q) dx + d

2q
ξ 2q

(∫
R3

∣∣∇u+∣∣q dx

)2

−
∫

�+
K(x)F

(
ξu+)

dx

}

+
{
λp

∫
R3

(
a
∣∣∇u−∣∣p + V (x)

∣∣u−∣∣p)
dx + b

2p
λ2p

(∫
R3

∣∣∇u−∣∣p dx

)2

+ λq

∫
R3

(
c
∣∣∇u−∣∣q + V (x)

∣∣u−∣∣q) dx + d

2q
λ2q

(∫
R3

∣∣∇u−∣∣q dx

)2

−
∫

�−
K(x)F

(
λu−)

dx

}

�
{
ξp

∫
R3

(
a
∣∣∇u+∣∣p + V (x)

∣∣u+∣∣p)
dx + b

2p
ξ 2p

(∫
R3

∣∣∇u+∣∣p dx

)2

+ ξq

∫
R3

(
c
∣∣∇u+∣∣q + V (x)

∣∣u+∣∣q) dx + d

2q
ξ 2q

(∫
R3

∣∣∇u+∣∣q dx

)2

− C1ξ
2q

∫
�+

K(x)
(
u+)2q

dx

}

+
{
λp

∫
R3

(
a
∣∣∇u−∣∣p + V (x)

∣∣u−∣∣p)
dx + b

2p
λ2p

(∫
R3

∣∣∇u−∣∣p dx

)2

+ λq

∫
R3

(
c
∣∣∇u−∣∣q + V (x)

∣∣u−∣∣q) dx + d

2q
λ2q

(∫
R3

∣∣∇u−∣∣q dx

)2

− C1λ
2q

∫
�−

K(x)
(
u−)2q

dx

}

+ C2|K|∞
(∣∣�+∣∣ + ∣∣�−∣∣) → −∞ as

∣∣(ξ, λ)
∣∣ → ∞.

Combining the fact that gu is a continuous function with gu(ξ, λ) → −∞ as |(ξ, λ)| → ∞, we conclude
that gu assumes a global maximum in (ξ̄ , λ̄) ∈ (0, ∞) × (0, ∞). Using (2.1), for any ξ, λ � 0 we get

gu(ξ, 0) + gu(0, λ) = I
(
ξu+) + I

(
λu−) = I

(
ξu+ + λu−) = gu(ξ, λ),

therefore

0 < max
ξ�0

gu(ξ, 0) < max
ξ,λ�0

gu(ξ, λ) = gu(ξ̄ , λ̄)
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and

0 < max
λ�0

gu(0, λ) < max
ξ,λ�0

gu(ξ, λ) = gu(ξ̄ , λ̄)

showing that (ξ̄ , λ̄) ∈ (0, ∞) × (0, ∞). By virtue of the uniqueness of the critical point of gu we have
that (ξ+, λ−) = (ξ̄ , λ̄), hence (ξ+, λ−) is the unique global maximum of gu.

(iii) From Lemma 3.1(a) we get ∂gu

∂ξ
(r, λ−) > 0 if r ∈ (0, ξ+), ∂gu

∂ξ
(ξ+, λ−) = 0 and ∂gu

∂ξ
(r, λ−) > 0 if

r ∈ (ξ+, ∞). Similarly for a−(r). �

Proceeding as in [38] we can prove the following lemma.

Lemma 4.2. If (un) ⊂ M and un ⇀ u in E, then u ∈ E and u± �= 0.

Now, we denote by

c∞ = inf
u∈M

I(u). (4.4)

From M ⊂ N it follows that c∞ � d∞ > 0.

5. Proof of Theorem 1.1

Let (un) ⊂ M be such that

I(un) → c∞ in R. (5.1)

First we show that (un) is bounded in E. Suppose that there exists a subsequence still denoted by (un)

such that

‖un‖ → ∞ as n → ∞.

Set vn = un

‖un‖ for all n ∈ N. Hence (vn) is bounded in E so by Lemma 2.2 we may assume that

vn ⇀ v in E,

vn → v a.e. in R
3,

vn → v in Lr
(
R

3
)

for r ∈ (
q, q∗).

(5.2)

Now, from un = ‖un‖vn it follows that

‖un‖v+
n + ‖un‖v−

n = ‖un‖vn = un ∈ M



AUTHOR  C
OPY

T. Isernia and D.D. Repovš / Double phase Kirchhoff problems with vanishing potentials 389

and by Lemma 4.1 we have ξ+(vn) = λ−(vn) = ‖un‖. Recalling that (ξ+, λ−) is the unique global
maximum point of gvn

with positive coordinates, for any ξ > 0 we infer

I(un) = I
(‖un‖vn

)
= I

(
ξ+(vn)v

+
n + λ−(vn)v

−
n

)
= gvn

(
ξ+(vn), λ−(vn)

)
� gvn

(ξ, ξ) = I(ξvn)

= ξp

p

∫
R3

(
a|∇vn|p + V (x)|vn|p

)
dx + b

2p
ξ 2p

(∫
R3

|∇vn|p dx

)2

+ ξq

q

∫
R3

(
c|∇vn|q + V (x)|vn|q

)
dx + d

2q
ξ 2q

(∫
R3

|∇vn|q dx

)2

−
∫
R3

K(x)F (ξvn) dx. (5.3)

Note that ‖vn‖ = 1, hence∫
R3

(
a|∇vn|p + V (x)|vn|p

)
dx � 1 and

∫
R3

(
c|∇vn|q + V (x)|vn|q

)
dx � 1.

Using 1 < p < q, and assuming without loss of generality that ξ > 1 so that ξq > ξp, and exploiting
the following inequality

aq + bq � Cq(a + b)q for all a, b � 0 and q > 1

from (5.3) we deduce

I(un) � ξp

p

∫
R3

(
a|∇vn|p + V (x)|vn|p

)
dx + ξq

q

∫
R3

(
c|∇vn|q + V (x)|vn|q

)
dx

−
∫
R3

K(x)F (ξvn) dx

� ξp

q
Cq‖vn‖q −

∫
R3

K(x)F (ξvn) dx

= ξp

q
Cq −

∫
R3

K(x)F (ξvn) dx. (5.4)

Assume by contradiction that v = 0. From (5.2) and Lemma 2.3 we deduce that for any ξ > 0

lim
n→∞

∫
R3

K(x)F (ξvn) dx = 0. (5.5)

Taking the limit in (5.4), and using (5.1) and (5.5) we have

c∞ � ξp

q
Cq for any ξ > 1,

which gives a contradiction. Therefore v �= 0.
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On the other hand

I(un)

‖un‖2q
= 1

p‖un‖2q

∫
R3

(
a|∇un|p + V (x)|un|p

)
dx + b

2p‖un‖2q

(∫
R3

|∇un|p dx

)2

+ 1

q‖un‖2q

∫
R3

(
c|∇un|q + V (x)|un|q

)
dx + d

2q‖un‖2q

(∫
R3

|∇un|q dx

)2

−
∫
R3

K(x)
F (un)

‖un‖2q
dx

� 1

p‖un‖2q−p
+ b

2p‖un‖2(q−p)
+ 1

q‖un‖q
+ d

2q

−
∫
R3

K(x)
F (‖un‖vn)

(‖un‖vn)2q

(
un

‖un‖
)2q

dx. (5.6)

Combining assumption (f3) together with Fatou’s lemma we get

lim
n→∞

∫
R3

K(x)
F (‖un‖vn)

(‖un‖vn)2q

(
un

‖un‖
)2q

dx = +∞ (5.7)

so taking the limit in (5.6) we get a contradiction in view of (5.1), ‖un‖ → ∞ as n → ∞ and (5.7). So
(un) is a bounded sequence in E and there exists u ∈ E such that un ⇀ u in E. From Lemma 4.2 we
have u± �= 0 and by Lemma 4.1 there are ξ+, λ− > 0 such that ξ+u+ + λ−u− ∈ M, from which

1

λ
2q−p
−

∫
R3

(
a
∣∣∇u−∣∣p + V (x)

∣∣u−∣∣p)
dx + b

λ
2(q−p)
−

(∫
R3

∣∣∇u−∣∣p dx

)2

+ 1

λ
q
−

∫
R3

(
c
∣∣∇u−∣∣q + V (x)

∣∣u−∣∣q) dx + d

(∫
R3

∣∣∇u−∣∣q dx

)2

=
∫

supp u−
K(x)

f (λ−u−)

(λ−u−)2q−1

(
u−)2q

dx. (5.8)

Our aim is to prove that ξ+ = λ− = 1. Without loss of generality, let us suppose that 0 < ξ+ � λ−.
First we prove that 0 < ξ+ � λ− � 1. Note that from un ⇀ u in E and exploiting Lemma 2.3 we have

lim
n→∞

∫
R3

K(x)f
(
u±

n

)
u±

n dx =
∫
R3

K(x)f
(
u±)

u± dx (5.9)

and also

lim
n→∞

∫
R3

K(x)F
(
u±

n

)
dx =

∫
R3

K(x)F
(
u±)

dx, (5.10)

and combining (un) ⊂ M with Fatou’s lemma we get〈
I ′(u), u±〉

� lim inf
n→∞

〈
I ′(un), u

±
n

〉 = 0,
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which yields

∫
R3

(
a
∣∣∇u−∣∣p + V (x)

∣∣u−∣∣p)
dx + b

(∫
R3

∣∣∇u−∣∣p dx

)2

+
∫
R3

(
c
∣∣∇u−∣∣q + V (x)

∣∣u−∣∣q) dx + d

(∫
R3

∣∣∇u−∣∣q dx

)2

�
∫

supp u−
K(x)f

(
u−)

u− dx. (5.11)

Subtracting (5.8) and (5.11) we obtain

(
1

λ
2q−p
−

− 1

)∫
R3

(
a
∣∣∇u−∣∣p + V (x)

∣∣u−∣∣p)
dx + b

(
1

λ
2(q−p)
−

− 1

)(∫
R3

∣∣∇u−∣∣p dx

)2

+
(

1

λ
q
−

− 1

) ∫
R3

(
c
∣∣∇u−∣∣q + V (x)

∣∣u−∣∣q) dx

�
∫

supp u−
K(x)

(
f (λ−u−)

(λ−u−)2q−1
− u−

(u−)2q−1

)(
u−)2q

dx

and using assumption (f3) we deduce 0 < λ− � 1. Hence, 0 < ξ+ � λ− � 1.
Next we show that

I
(
ξ+u+ + λ−u−) = c∞. (5.12)

Now, from (4.4), 0 < ξ+ � λ− � 1, assumption (f4), (5.9) and (5.10) we obtain

c∞ � I
(
ξ+u+ + λ−u−)

= I
(
ξ+u+ + λ−u−) − 1

2q

〈
I ′(ξ+u+ + λ−u−)

, ξ+u+ + λ−u−〉

=
(

1

p
− 1

2q

)∫
R3

(
a
∣∣∇(

ξ+u+ + λ−u−)∣∣p + V (x)
∣∣ξ+u+ + λ−u−∣∣p)

dx

+ b

2

(
1

p
− 1

q

)(∫
R3

∣∣∇(
ξ+u+ + λ−u−)∣∣p dx

)2

+ 1

2q

∫
R3

(
c
∣∣∇(

ξ+u+ + λ−u−)∣∣q + V (x)
∣∣ξ+u+ + λ−u−∣∣q) dx

+
∫
R3

K(x)

(
1

2q
f

(
ξ+u+)(

ξ+u+) − F
(
ξ+u+))

dx

+
∫
R3

K(x)

(
1

2q
f

(
λ−u−)(

λ−u−) − F
(
λ−u−))

dx
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=
(

1

p
− 1

2q

)∫
R3

(
a|∇u|p + V (x)|u|p)

dx + b

2

(
1

p
− 1

q

)(∫
R3

|∇u|p dx

)2

+ 1

2q

∫
R3

(
c|∇u|q + V (x)|u|q) dx

+
∫
R3

K(x)

(
1

2q
f

(
u+)

u+ − F
(
u+))

dx +
∫
R3

K(x)

(
1

2q
f

(
u−)

u− − F
(
u−))

dx

=
(

1

p
− 1

2q

)∫
R3

(
a|∇u|p + V (x)|u|p)

dx + b

2

(
1

p
− 1

q

)(∫
R3

|∇u|p dx

)2

+ 1

2q

∫
R3

(
c|∇u|q + V (x)|u|q) dx +

∫
R3

K(x)

(
1

2q
f (u)u − F(u)

)
dx

� lim inf
n→∞

{(
1

p
− 1

2q

) ∫
R3

(
a|∇un|p + V (x)|un|p

)
dx + b

2

(
1

p
− 1

q

)(∫
R3

|∇un|p dx

)2

+ 1

2q

∫
R3

(
c|∇un|q + V (x)|un|q

)
dx +

∫
R3

K(x)

(
1

2q
f (un)u − F(un)

)
dx

}

= lim inf
n→∞

{
I(un) − 1

2q

〈
I ′(un), un

〉} = c∞

which implies that (5.12) holds true. In particular it follows that ξ+ = λ− = 1.
Next, we prove that the minimum point u = u+ + u− is a critical point of I. Assume by contradiction

that I ′(u) �= 0. Then, due to the continuity of I ′ we can find α, β > 0 such that ‖I ′(v)‖ � β for all
v ∈ E with ‖v − u‖ � 3α.

Define D = [ 1
2 ,

3
2 ]×[ 1

2 ,
3
2 ] and E

± = {u ∈ E : u± �= 0}, and let us consider the function Gu : D → E
±

defined by setting

Gu(ξ, λ) = ξu+ + λu−.

Using Lemma 4.1 we can see that I(Gu(1, 1)) = c∞ and I(Gu(ξ, λ)) < c∞ in D \ {(1, 1)}.
Define

τ = max
(ξ,λ)∈∂D

I
(
Gu(ξ, λ)

)
,

then τ < c∞.
Set S̃ = {v ∈ E : ‖v − u‖ � α} and choose ε = min{ 1

4(c∞ − γ ),
αβ

8 }. By Theorem 2.3 in [54] there
exists a deformation η ∈ C([0, 1] × E,E) such that the following assertions hold:

(a) η(ξ, v) = v if v /∈ E
−1([c∞ − 2ε, c∞ + 2ε]);

(b) I(η(1, v)) � c∞ − ε for each v ∈ E with ‖v − u‖ � α and I(v) � c∞ + ε;
(c) I(η(1, v)) � I(η(0, v)) = I(v) for all v ∈ E.

From (b) and (c) we get

max
(ξ,λ)∈∂D

I
(
η
(
1, Gu(ξ, λ)

))
< c∞. (5.13)
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Now we prove that

η
(
1, Gu(D)

) ∩ M �= ∅ (5.14)

because the definition of c∞ and (5.14) contradict (5.13).
Let us define

�u(ξ, λ) = η
(
1, Gu(ξ, λ)

)
,

ψ0(ξ, λ) = (〈
I ′(Gu(ξ, 1)

)
, ξu+〉

,
〈
I ′(Gu(1, λ)

)
, λu−〉)

,

ψ1(ξ, λ) =
(

1

ξ

〈
I ′(�u(ξ, 1)

)
, �+

u (ξ, 1)
〉
,

1

λ

〈
I ′(�u(1, λ)

)
, �−

u (1, λ)
〉)

.

Exploiting Lemma 4.1(iii), the C1 function γ+(ξ) = gu(ξ, 1) has a unique global maximum point
ξ = 1. By density, given ε > 0 small enough, there is γ+,ε ∈ C∞([ 1

2 ,
3
2 ]) such that ‖γ+ −γ+,ε‖C1([ 1

2 , 3
2 ]) <

ε with ξ+ being the unique maximum global point of γ+,ε in [ 1
2 ,

3
2 ]. Hence, ‖γ ′+ − γ ′+,ε‖C([ 1

2 , 3
2 ]) < ε,

γ ′+,ε(1) = 0 and γ ′′+,ε(1) < 0. Analogously, set γ−(λ) = gu(1, λ), then there exists γ−,ε ∈ C∞([ 1
2 ,

3
2 ])

such that ‖γ ′− − γ ′−,ε‖C([ 1
2 , 3

2 ]) < ε, γ ′+,ε(1) = 0 and γ ′′+,ε(1) < 0.
Let us define ψε ∈ C∞(D) by setting

ψε(ξ, λ) = (
ξγ ′

+,ε(ξ), λγ ′
−,ε(λ)

)
.

We note that ‖ψε − ψ0‖C(D) < 3
√

2
2 ε, (0, 0) /∈ ψε(∂D), and (0, 0) is a regular value of ψε in D.

Since (1, 1) is the unique solution of ψε(ξ, λ) = (0, 0) in D, by the definition of Brouwer’s degree,
we can infer that, for ε small enough, it holds

deg
(
ψ0, D, (0, 0)

) = deg
(
ψε, D, (0, 0)

) = sgn Jac(ψε)(1, 1), (5.15)

where Jac(ψε) is the Jacobian determinant of ψε and sgn denotes the sign function.
We note that

Jac(ψε)(1, 1) = [
γ ′

+,ε(1) + γ ′′
+,ε(1)

] × [
γ ′

−,ε(1) + γ ′′
−,ε(1)

] = γ ′′
+,ε(1) × γ ′′

−,ε(1) > 0, (5.16)

so combining (5.15) with (5.16) we find

deg
(
ψ0, D, (0, 0)

) = sgn
[
γ ′′

+,ε(1) × γ ′′
−,ε(1)

] = 1.

By the definition of τ and the fact that ε = min{ 1
4(c∞ − γ ),

αβ

8 } we have that for any (ξ, λ) ∈ ∂D

I
(
Gu(ξ, λ)

)
� max

(ξ,λ)∈∂D
I
(
Gu(ξ, λ)

)
<

1

2
(τ + c∞) = c∞ − 2

(
c∞ − τ

4

)
� c∞ − 2ε.

This and (a )yields that Gu = �u on ∂D. Therefore, ψ1 = ψ0 on ∂D and consequently

deg
(
ψ1, D, (0, 0)

) = deg
(
ψ0, D, (0, 0)

) = 1,

which shows that ψ1(ξ, λ) = (0, 0) for some (ξ, λ) ∈ D.
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Now, in order to verify that (5.14) holds, we prove that

ψ1(1, 1) = (〈
I ′(�u(ξ, 1)

)
, �u(1, 1)+〉

,
〈
I ′(�u(1, 1)

)
, �u(1, 1)−〉) = 0. (5.17)

As a matter of fact, (5.17) and the fact that (1, 1) ∈ D, yield �u(1, 1) = η(1, Gu(1, 1)) ∈ M.
We argue as follows. If the zero (ξ, λ) of ψ1 obtained above is equal to (1, 1) there is nothing to prove.

Otherwise, we take 0 < δ1 < min{|ξ − 1|, |λ − 1|} and consider

D1 =
[

1 − δ1

2
, 1 + δ1

2

]
×

[
1 − δ1

2
, 1 + δ1

2

]
.

Therefore (ξ, λ) ∈ D \ D1. Hence, we can repeat for D1 the same argument used for D, so that we
can find a couple (ξ1, λ1) ∈ D1 such that ψ1(ξ1, λ1) = 0. If (ξ1, λ1) = (1, 1), there is nothing to prove.
Otherwise, we can continue with this procedure and find in the n-th step that (5.17) holds, or produce a
sequence (ξn, λn) ∈ Dn−1 \ Dn which converges to (1, 1) and such that

ψ1(ξn, λn) = 0, for every n ∈ N. (5.18)

Thus, taking the limit as n → ∞ in (5.18) and using the continuity of ψ1 we get (5.17). Therefore,
u = u+ + u− is a critical point of I.

Finally, we consider the case when f is odd. Clearly, the functional ψ is even. In the light of (3.2)
and c∞ � d∞ > 0 we can see that ψ is bounded from below in S. Moreover, using Lemma 2.2 and
Lemma 2.3, we deduce that ψ satisfies the Palais–Smale condition on S. Hence, applying Proposition 3.1
and [52], we conclude that I has infinitely many critical points.
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