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Abstract

The paper introduces a group LSP of obstructions to splitting a homotopy
equivalence along a pair of submanifolds. We develop exact sequences
relating the LSP-groups with various surgery obstruction groups for a
manifold triple and structure sets arising from a manifold triple. The natural
map from the surgery obstruction group of the ambient manifold to the LSP-
group provides an invariant when elements of the Wall group are not realized
by normal maps of closed manifolds. Some LSP-groups are computed
precisely.
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1. Introduction

Consider a simple homotopy equivalence f : M — X of closed n-dimensional
oriented topological manifolds. Such a map is called an s-triangulation of the
manifold X . Two s-triangulations

fiiM;—>X,i=12

are said to be equivalent if there exists an orientation preserving homeomorphism
h: My — M, such that the diagram
m A M
AN L2 .1
X

is homotopy commutative.
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The set of equivalence classes of s-triangulations of the manifold X is denoted
by S(X) = 8*(X) (see [18]and [21]). The computation of the structure set S*(X)
for a manifold X is one the main problems of geometric topology.

Let Y C X be a locally flat submanifold of codimension ¢ in n-dimensional
topological manifold X. A simple homotopy equivalence f : M — X splits along
the submanifold Y (see [18] and [21]) if it is homotopy equivalent to a map g,
transversal to Y such that N = g~1(¥) satisfies the following properties:

i) g|y:N —7Y isasimple homotopy equivalence

ii) glan\wy: M\ N — X \Y is asimple homotopy equivalence. (1.2)

A simple homotopy equivalence g : M — X with the properties (1.2) is called
an s-triangulation of the pair (X,Y). The set of concordance classes of such s-
triangulations is denoted by S(X,Y,£) where ¢ is the topological normal bundle of
the submanifold ¥ in X (see [18, §7.2]).

Let U be a tubular neighborhood of the submanifold ¥ in X, and let 3U denote
the boundary of U. Denote by

71 (0U) — m(X\Y)
F = J J ) (1.3)
mU) - m(X)

the push-out square of fundamental groups with orientations.

An obstruction to splitting the map f along the submanifold Y lies in the
splitting obstruction group LSy, (F) which depends only on n — g mod 4 and on
the push-out square F.

In fact, the obstruction to splitting defines correctly the map [18] that fits in the
following exact sequence

o S(X,Y,8) = S(X) > LSy_y(F). 14

The splitting obstruction groups are closely related to other obstruction groups
which arise naturally for the manifold pair ¥ C X (see [1], [2], [13], [18],
and [21]). The main relation among them is given by the following braid of exact



Splitting along a submanifold pair 387

sequences (see [18] and [21])

- Lym&X\Y)) — Ly (m1(X)) —
7N\ 7N
LPy—q(F) Lp(mi(X\Y) = w1 (X))
NS NS
~  LSy—g(F) —  Lp—g(m(@)) -
—> LSy—g—1(F) -
7N\
NS
— Lp1(m(X\Y)) —

(1.5)

where L. = LS denote the surgery obstruction groups and LP«(F) = LP:(F)
denote the surgery obstruction groups of the manifold pair (X,Y). The groups
LP,(F) also depend only on n — g mod 4 and on the square F.

The main methods for computing the set S(X) (for n > 4) are based on the
surgery exact sequence (see [17], [18], and [21])

wo = Lyg1(m1(X)) = S(X) = [X,G/TOP] > Ly (71 (X)) (1.6)

where the set [X,G/TOP] is isomorphic to the set of concordance classes of
topological normal maps to the manifold X.

The set S(X,Y,£) fits into the surgery exact sequence [18, page 584] for the
manifold pair (X,Y)

wo = LPygi1(F) ~ S(X,Y,£) = [X,G/TOP] — LPu—y(F).  (1.7)

The exact sequence (1.7) is the natural generalization of the exact sequence (1.6) to
the case of a manifold pair.

The computation of the map ¢ in (1.6) is the basic step in investigating the
surgery exact sequence. For manifolds with finite fundamental groups deep results
in this direction were obtained in [5], [6], [9], [10], and [11]. The results of these
papers are based on relations between the surgery exact sequence and the splitting
problem for a one-sided submanifold.

Let

gn—a—4 - yr—4 c x* (1.8)

be a triple of closed topological manifolds. We shall consider only locally flat
topological submanifolds equipped with the structure of a mormal topological
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bundle (see [18, pages 562-563]). Such a triple of manifolds defines a stratified
manifold X in the sense of Browder and Quinn (see [4], [14], [15], [16], and
[22]).

A simple homotopy equivalence f : M — X is an s-triangulation of the triple
if every pair of manifolds from this triple satisfies properties that are similar to (1.2)
for the pair (X,Y) (see [4], [16], and [21]). The set of concordance classes of such
s-triangulations is denoted by S(X) = S(X,Y,Z).

Surgery theory is applicable to stratified spaces, and we have the following exact
sequence (see [4] and [22])

.o = LE2 (X) — S(X) = [X,G/ TOP] - LE2(X) (1.9)

where L2 2 (X) are the Browder-Quinn surgery obstruction groups of the stratified
space X. For these groups we have isomorphisms

LB2(X)=LTy—y—(X,Y,2)

with surgery obstruction groups LT, of the manifold triple (X,Y,Z) (see [14] and
[16D).

In the present paper we develop surgery theory for manifold triples in order
to investigate splitting a homotopy equivalence along a submanifold pair. By
definition, a simple homotopy equivalence f : M — X splits along the submanifold
pair (Z C Y) ifitis concordant to an s-triangulation g of the triple Z C ¥ C X. We
introduce groups LSP, of obstructions to splitting a simple homotopy equivalence
f : M — X along a pair of embedded submanifolds (Z C Y) C X and describe
their relations to classical obstruction groups in surgery theory. The group LSPs
is a natural straightforward generalization of the group LS, if we consider a pair
of submanifolds (Z C Y') instead of a submanifold ¥. The LSP-groups give in
a natural way an invariant for determining when elements of Wall groups are not
realized by normal maps of closed manifolds. This invariant is equivalent to the
pair of Hambleton’s invariants (4 and B) in paper [6].

The rest of the paper is organized as follows. In section 2, we recall notation,
constructions and results from the literature, which will be needed in the current
paper. In section 3, we construct the spectrum LSP(X,YZ) and relate via exact
sequences its homotopy groups LSP«(X,Y, Z) to classical obstruction groups and
structure sets arising from triples of manifolds. In section 4, we apply the above
to obtain results when elements of Wall groups are not realized by normal maps of
closed manifolds and compute some L SPy-groups.
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2. Preliminaries

The current paper will make significant use of constructions, ideas, and results in
the papers [1], [2], [8], [13], [16], [17], [18], and [21]. This is an extension of
work of A.Bak and Y.Muranov in [1] and [2]. A thread running through all of these
articles is the use, due to Ranicki [17], [18], of spectra for developing the algebraic
theory of surgery. In this section we recall some necessary definitions and results
from these papers.

Consider a triple of topological manifolds (1.8). Let & denote the normal bundle
of Y in X and F the square of fundamental groups in the splitting problem for the
pair Y C X. Similarly we introduce the following bundles and squares:

the bundle 7 and the square W for the pair Z C Y,

the bundle v and the square ® for the pair Z C X.

Let Ut be the space of the normal bundle £. We shall assume that the space U,
of the normal bundle v is identified with the space V¢ of the restriction of the bundle
£ to the space U, of the normal bundle 7 so that 3U, = 0Ut|y, U Uglau, (see [4],
[15], [16], and [22]).

The conditions on the spaces of normal bundles for the manifold triple (1.8)
yvield a pair of manifolds with boundaries

(Y\Z, 0¥\ 2)) c(X\Z,3(X\ 2)) 2.1

where
¥ \Z)coXx\2) 2.2)

is a closed manifold pair. Denote by Fz the square of fundamental groups in the
splitting problem relative to boundary for the pair (2.1), and by Fy the square in the
splitting problem for the pair (2.2).

For an arbitrary group = with orientation the surgery Q-spectrum L(x) =
L(Zr) is defined (see [8], [17], and [21]). Here Zn denotes the integral group
ring equipped with the involution

Sagg > Sagw(g)g™, ag €L,gem

where w : w — {1} is the orientation homomorphism. Recall that for this £2-
spectrum we have

7tn (L(7)) = Ln(7).

Let L, denote the 1-connected cover of the spectrum L(1) with Leo = G/TOP.
For a topological space X we have the following cofibration (see [17] and [18])

X4 ALs = L(m1 (X)) = S(X). (2.3)
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The homotopy long exact sequence of the cofibration (2.3) gives the algebraic
surgery exact sequence of Ranicki [17]

coo = Ly (m1(X)) = Spr1(X) = Hp(X,Le) = Ly (71 (X)) = - (2.4)
with
Tnt1(S(X)) = Spt1(X) = STOP (X).

The left part of the exact sequence (2.4) is isomorphic to the exact sequence (1.6).
A similar result is valid for the exact sequences (1.4), (1.7), and (1.9). In
particular, we have cofibrations of spectra

S(X,Y,£) - S(X) —» ZITILS(F), (2.5)
X4 AL — SILP(F) - S(X,Y,£), (2.6)

and
X4 ALy - STHLT(X,Y,Z) — S(X,Y,2), Q.7

where ¥ denotes the suspension functor on the category of Q-spectra. These
cofibrations generate exact sequences that contain parts which are isomorphic to
the exact sequences (1.4), (1.7), and (1.9), respectively.

Recall that for an arbitrary pair (X,Y) of topological spaces equipped with
orientation, a spectrum S(X,Y) for the relative structure sets S«(X,Y) is defined
(see [17] and [18]).

A homomorphism of oriented groups f : = — #’ induces a cofibration of €2-
spectra

L(r) - L(x") - L(f) 2.3)

where IL(f) is the spectrum for relative L-groups of the map f.
For the manifold pair (X,Y) we have a homotopy commutative diagram of
spectra (see [1], [2], [8], and [18])

L (Y)) — SL@i(0U) » m(U)) » ZTL(m (X \Y) — 71 (X))
N ¥ \
B1L (w1 (30)) - SIL(m (X \ Y)),

2.9)
where the left maps are transfer maps on the spectra level, and the right horizontal
maps are induced by inclusions.

The diagram (2.9) provides a homotopy commutative diagram of spectra

L(m(Y))—» YL (X \Y) > (X)) — ZLS(F)
}= l l (2.10)
L(m (Y)) — L (r (X \Y)) — ZLP(F)
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in which the horizontal rows are cofibrations. The homotopy long exact sequences
of the maps from diagram (2.10) generate the diagram (1.5).
The triple (1.8) defines also on the spectra level the maps (see [16] and [22])

L(71(Z)) » S LP(Fy) - 37+ LP(Fz) (2.11)

where the first map is the transfer map, and the second map is induced by the
inclusion in (2.1).
By [16] and [22] we have a cofibration

L(r1(2)) = =~ ¢ LP(Fz) » SLT(X,Y,Z) (2.12)

where the first map is the composition of the maps in (2.11).
Consider the composition of the maps

LP(F) = L(m1(Y)) = S(¥) — ST LS (). (2.13)

The first map in (2.13) follows from (2.10), the second is the map from (1.3) for the
manifold Y, and the third map is the map from (2.5) for the pair (¥,Z). By [14]
and [16] we have the cofibration

LP(F) — 29 ILS(¥) —» ST HLT(X,Y,Z). (2.14)
From the cofibration (2.14), we obtain the homotopy pull-back square of spectra
LT(X,Y,Z) — X 7LP(F)

l J (2.15)
LP(¥) — S 7L ()

where the cofibres of the vertical maps are naturally homotopy equivalent to the
spectrum X9 1L (7, (X \ 7).
Consider the commutative diagram of inclusions
¥\z) ¢ X\2)
n n (2.16)
Y C X.

The horizontal inclusions of submanifolds of codimension g, provide as in (2.10),
the transfer maps fitting into the homotopy commutative diagram

L(m ¥\ 2Z)) -  EZHL@(X\Y)->m(X\Z) - ElTaSi(Fz)
\

\)
Lz (Y)) - S9L(m; (X \Y) = X) -~ ZILi(F)
A A

L\ Z) > m¥) T  SLmE\Z)->mE) - z“q’lL(JZan
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in which the upper vertical maps are induced by the vertical maps from (2.16). The
spectrum LNS = LNS(X,Y,Z) is the spectrum for the relative L-groups of the
map t77¢ (see [7] and [15]) with the homotopy groups

LNS, = LNSy(X,Y,Z) = m,(LNS).

Note that the diagram (2.17) generates the following commutative diagram [15]

}

{
- LSn—c{L(Fz) - Ln—q (W{L(Y \Z) =  Laplm(X\ 11) -»>mW)) —
- LSﬂ_J,q(F) ~ Ly—g(my (Y)) —~  La(m (X\I:l:) —~m(X)) —

\A
— LNS; > Lypyg@m(Y\Z) > m(Y)) —  Lp(m(W) - m1(X)) —
\ | \x

(2.18)
wherek =n—qg—q and W=X\Z.

3. Splitting a homotopy equivalence along a submanifold pair

For the triple of manifolds (1.8) we introduce below the spectrum ILSP(X,Y,Z)
with homotopy groups

LSP, = LSP.(X,Y,Z) = m,(LSP(X,Y,Z)). 3.1

The groups LSP«(X,Y,Z) are a natural straightforward generalization of the
splitting obstruction groups LS« (F) to the case when the manifold X contains a
pair of embedded submanifolds (Z C Y) C X instead of first a single submanifold
Y. We describe via exact sequences the relation of the groups LSP4(X,Y,Z) to
classical obstruction groups and structure sets which arise naturally for a triple of
manifolds.

The bottom map in the diagram (2.15) and the commutative diagram (2.10)
provide the homotopy commutative diagram of spectra

LP(Y) —» Z 7L (X \Y) - 71 (X))
= \ (3.2)
LP(¥) —~ S0 L(my (X \ Y))

in which the fiber of the bottom map is the spectrum L.T(X,Y,Z). This follows
from the pull-back property of the square (2.15). Denote by LSP(X,Y, Z) the fiber
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of the upper horizontal map in (3.2). We obtain the homotopy commutative diagram
of spectra

LP(W) - S~ 7L{n (X \¥) = m (X)) — SLSP(X,Y,Z)

V= 3 3 (3.3)
LP(¥) - S04 L (7 (X \ 7)) — SLT(X,Y,Z)

in which the right vertical map is induced by the two other vertical maps (see [20]).
Note that the right square in (3.3) is a pull-back.

Proposition 3.1 The groups LSP.(X,Y,Z) that are defined by (3.1) fit into the
Jfollowing braid of exact sequences

- Ly(C) — Ly (71 (X)) - LSPr, —
7N 7N 7N
LT (X,Y,Z) L,(C - D)
NS N/ N/
~  LSP, — LP (%) — Lp1(C) -,
3.4

where C = (X \Y), D = my(X), and k = n—q —q'. The diagram (3.4) is
realized on the spectra level.

Proof: The right square in the diagram (3.3) is a pull-back. The homotopy long
exact sequences of this square provide the commutative braid of exact sequences
34). d

Theorem 3.2 There exists a commutative braid of exact sequences

- SnXY,z) — Hy(X,La) — Ly(r1 (X)) —

7N 7N 7N
Sn+1 (X) LTn_q_q/
N/ NS N/
= Lyp1(m(X)) —  LSPyyyg —  S(XY.Z) —

(3.5)
which is realized on the spectra level.

Proof: Consider the homotopy commutative square of spectra

XiALe — LmX))
J = (3.6)
TIHLT - L(m (X))

in which the upper horizontal map lies in (2.3), the left vertical map lies in (2.7),
and the bottom horizontal map is the map from the diagram (3.4) on spectra level
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(see [14] and [15]). The diagram (3.6) induces a map of the fibres of its horizontal
maps. We obtain the homotopy commutative diagram of spectra

S-IS(X) - XpALe — L(ni(X))

{ \) b=
ItILSP —» SIMLT - L(m(X))

in which the left square is a push-out. The homotopy long exact sequences of this
square give the diagram (3.5). O

The commutative diagram (3.5) is a natural generalization of the diagram in [18,
Proposition 7.2.6, iv ] to the case of a pair of submanifolds Z C Y in the manifold
X. The map

»TIS(X) — S4tYLSP

induces a map

that on the algebraic level corresponds to taking the obstruction to splitting along
the submanifold pair Z C Y.

Now we describe the relation of LSPy to classical surgery obstruction groups
for the triple (X,Y, Z) of manifolds (1.8).

Theorem 3.3 There exist braids of exact sequences

—~ LSy4(Fz) — LTi(XY,Z) - Ly(mi(X)) -

7N 7N 7N
LSPy LPy(®)
~ NS N/
= Lppi(m (X)) — LS (®) - LSn_q_l(Fz) —,
3.7
— LSy—q(Fz) —> LSu—4(F) — LS;_1(¥) —
7N 7N 7N
LSPy LNSy (3.8)
N/ NS N/

- LS(¥) —> LSk (9) —  LSy—g-1(Fz) -,

and
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S LSpqui(F)  — LS,(¥) - LT, -
7N\ 7N 7 N
LPn—q+1(F) LSPy
N/ NS NS
- LT+ — Lyy1(m (X)) —>  LSp—g(F) '—>(§ 5

where k = n—q —q’. The braids (3.7), (3.8), and (3.9) are realized on the spectra
level.

Proof: The natural forgetful maps (see [15] and [16])
LT(X,Y,Z) - LP(®) — X797 L(r (X))
provide the homotopy commutative square

LT(X,Y,Z) — Y9 7L(m (X))
N2 = (3.10)
LP(®) — X7 7L(m (X)).

The square induces a map of the fibres of its horizontal maps (see [20]). Thus we
obtain a homotopy commutative diagram

LSP(X,Y,Z) — LT(X,Y,Z) — X7 9L(m(X))

] | =
LS(®) —  LP(®) - Z77Lm(X))

in which the left square is a push-out (and hence a pull-back). Now, similarly to
Proposition 3.1, we obtain the diagram (3.7).

The diagram (2.10) for the pair (¥, Z) provides a homotopy commutative pull-
back square of spectra

LP(¥) — >~ L1 (Y))
} l (3.11)
L(m(Z)) —» YL (Y \ Z) > 7 (Y)).

There is a homotopy commutative pull-back square of spectra

UL (G (X \Y) > 1 (X)) = X7 L(m (X \Y) = 71 (X))
. . (3.12)
SCHL(m (X \ Z) = m (X)) = S¢L( (X \ Z) > mi(X))
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in which the vertical maps are induced by the natural inclusion. The transfer maps
and diagrams (2.17) and (3.3) give the map of diagram (3.11) to diagram (3.12).
The cofibers of this map of diagrams provide a homotopy commutative pull-back
square of spectra (see [19])

TLSP — X THLS(F)

\A A (3.13)
SLS(®) — SLNS.

This follows from (2.9), (2.18), and (3.3). The diagram (3.8) follows from the square
(3.13), similarly to the previous case.
The natural forgetful maps in the diagram (2.15)

LT(X,Y,Z) - S CLP(F) — Z~ 77 L(m (X))
provide the homotopy commutative diagram of spectra
LT(X,Y,Z) —» S 9LP(F) —  ZLS(¥)

= 4 L (3.14)
LT(X,Y.Z) — S 9 7L(m(X)) — 3ILSP(X.Y.Z),

in which the rows are cofibrations, and the right vertical map is defined by [19].
Hence the right square in (3.14) is a pull-back. From this, the diagram (3.9) follows.
O

Corollary 3.4 There exist exact sequences
e —> LSPk —_ LSn_q(F) - LSk_l(\IJ) —> ey
car = LSPk —> LSk(@) —> LSn—q—l (Fz) >

and
vo = LSPp — LP(¥) = Lp-1(m1 (X \ Y) = (X)) — -,
in which the left maps are natural forgetful maps.

Now we describe some relations between the LSP,-groups and various struc-
ture sets which arise for the triple of manifolds (X,¥, Z).

Theorem 3.5 There exist braids of exact sequences

- Sn (X) - LSPk—l - SI—-I (erx 77) -
/ 7N
SH(X»X\Y) SH—I(X»YsZ)
NS N N A
- S(¥.Z,n) —> Sn-1(X\Y) -— Sp1(X) -,

(3.15)
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- Hi(Y,Ls) —> Ly(m(X\Y)— m(X)) - LSPy—y -
7 N\ /T N\ 7 N
LPi(V) Sn(X,X\7)
N/ N N/
-  LSP; — SiY,Z,n) — Hyi_1(Y,Ls) —,
(3.16)
- LS(Fz) — &(X,Y.2) - Sn(X) -
7N 7N VAN
LSPk Sn (X,Z,U) (3.17)
N/ NS NS
- Spr1(X) —  LS(®) — LS;—1(Fz) —,
and
- LSi(F) — LSe(l) =  S(XY.Z) —
7N\ 7N\ 7N\
Spa1(X, Y,E) LSP; (3.18)
N NS N/
- Spr1(X,Y,Z) —_— Sp1(X) —  LSI(F) -,

where | =n —q,k = n—q —q'. The diagrams (3.15)-(3.18) are realized on the
spectra level.

Proof: The transfer map gives the commutative diagram (see [18])

Hyg(YL) S Hy(X.X\Y:L.)
N ! (3.19)
Hn—l (X\Y;L°)~

Consider the commutative triangle

LPy—gq(¥) — Ly (m (X \Y) = w1 (X))
N\ \A (3.20)
Lp—1(m1(X\Y))

which lies in the commutative diagram (3.4).

The results of [18, Proposition 7.2.6] provide the maps from the groups in
diagram (3.19) to the corresponding groups of diagram (3.20). On the spectra level
the cofibres of this map give a homotopy commutative triangle of spectra

SY,Z,p) — ITIS(X,X\Y)

N ) (3.21)
TeHIS(X\ Y).
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By [20] the diagram (3.21) induces a homotopy commutative diagram

S(Y,Z;n) - TUSX,X\Y) -  ITILSP

= A \A
SY,Z;m) — TIHIS(X\Y) — TIHIS(X,Y,Z)

in which the rows are cofibrations, and the right square is a pull-back. The homotopy

long exact sequences of the maps of this square give the braid (3.15). In a similar
way, the maps from (3.19) to (3.20) provide the pull-back square

SILP(W) — Y 9L(r(X\Y)— 71 (X))

\A \J
SV, Z,n) — TIS(X, X\ Y)

in which the cofibers of the vertical maps are homotopy equivalent to the spectrum
Y+ A L,. From this square we obtain the braid of exact sequences (3.16). The
diagram (3.17) is obtained in a similar way if we consider on the spectra level the
homotopy commutative triangle of the cofibers of the map from H,(X,Ls) to the
triangle of natural forgetful maps

\ 13 (3.22)
L (1 (X))

which are obtained from square (3.10). We obtain diagram (3.18) in a way similar
to that of diagram (3.17). To do this we have to consider the commutative triangle
LTn-—-q—ql —_> LPn—q (F)

N \)
Ly (1 (X))

instead of the triangle (3.22). O

Let Y"7? C X" be a manifold pair withn —g > 5and ¢ > 3. Then by [18] we
have isomorphisms

LSn(F) = Ln(w1(Y)), LPy(F) & Lytq(m1(X)) ® L (71 (Y)). (3.23)
Consider the triple of manifolds (1.8) with the conditions

n—-q—q' 2549=3,4 >3 (3.24)
By [14, Theorem 3] we have isomorphisms
LTn—q—q’ =Ly, (771 (X)) @ Ln—q (nl (Y)) S Ln—q—q’ (771 (Z)) . (3.25)

Next we obtain similar results for the LSP,-groups.
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Theorem 3.6 Suppose the triple of manifolds (1.8) satisfy the conditions (3.24).
Then
LSPyg-g(X,Y,Z) = Lp—q(71(Y)) ® Ly—g—g (w1(2)).

Proof: The result follows by considering the diagram (3.9) and using the isomor-
phisms (3.25) and (3.23). I

Theorem 3.7 Suppose the triple of manifolds (1.8) satisfy the conditions n—q—q' >
5and q > 3. Then

LSPy—y—q(X,Y,Z) =% LPp_y— g (9).
Proof: 'We have isomorphisms
LSn(Fz) & Ln(my (Y \ Z)), LSy(F) = Lp(m1(Y)), LSn(®) = Ln(m1(2)),
since g > 3. The isomorphism
LNSp, & Ly g(mi(Y \ Z) — 7 (Y))

follows from diagram (2.18), since g > 3. The assertion of the theorem follows now
by chasing diagram (3.8). O

'The Theorems 3.6 and 3.7 explain the geometrical meaning of the obstruction
groups LSP,. These groups provide obstructions to surgery on the submanifold
pair (Y, Z) inside the ambient manifold X .

4. Examples and applications

A pair of manifolds ¥ C X is called a Browder-Livesay pair if ¥ is an one-
sided submanifold of codimension 1 and the horizontal maps in the square (1.3)
are isomorphisms (see [3], [5], [6], [11], and [12]). In this case the splitting
obstruction groups are denoted by

LN, (71 (X \Y) = 71(X)) = LSn(F).

Suppose the pairs of manifolds (X,Y) and (¥,Z) in the triple (1.8) are Browder-
Livesay pairs. In this case g = g’ = 1. Denote by r, the map

Ly(m1 (X)) = LSP,—3(X,Y,Z)
in the braid (3.4). Let

r: Ly (X)) = LSp—a(F) = LNy (m1(X \ Y) = w1 (X))
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denote the map in the braid (1.5). The map r gives the Browder-Livesay invariant
of an element x € L,(w1(X)). If r(x) # O then the element x is not realized by a
normal map of closed manifolds [5].

In the paper [6] the invariants A and B were defined. The invariant A coincides
with 7, and the invariant B is defined on the kernel of the invariant 4. The invariant
B is called the second Browder-Livesay invariant [11]. It is proved in [6] that if
B(x) # 0 then the element x is not realized by a normal map of closed manifolds.

Proposition 4.1 Suppose the pairs of manifolds (X,Y) and (Y,Z) are Browder-
Livesay pairs. Then rp(x) # 0 if and only if A(x) # 0 or B(x) # 0.

Proof: Consider the exact sequence fitting into the diagram (3.7)

> LTn-—Z(X,Y,Z) - Ln(n'l (X)) —':i LSPn—3(X,Y>Z) e

The proposition follows from this exact sequence and [15, Theorem 3]. O

Corollary 4.2 If rp(x) # O then the element x € Ly(71(X)) is not realized by a
normal map of closed manifolds.

Next we compute some LSP-groups. Consider the triple
(Z CY C X) =RP" c RP*"*! c RP"?) 4.1)
of real projective spaces with n > 5. The orientation homomorphism
w:m (RPY) =7Z/2 — {£1}

is trivial for k£ odd and nontrivial for k even. We have the following table for surgery
obstruction groups (see [12] and [21])

n=0 n=1 n=2 n=3
Ln(1) Z 0 Z/2 0
Ln(Z/2Y) Z®Z 0 ]2 Z]2
L,(Z/27) Z]2 0 Z/]2 0

The superscript "+" denotes the trivial orientation of the corresponding group

and the superscript "—" denotes the nontrivial orientation. For the Browder-Livesay
pairs in (4.1) we have the squares of fundamental groups

1 —> 1
Fi=( 3 \) )
Z[2F — Z/2%
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Furthermore we have the isomorphisms (see [12, page 15] and [21])
LSy(F*) = LNy(1 = Z/2%) = BLy41(+) = Lnt2(1)

and
LSy(F7)= LNy(1 = Z/27) = BLy41(=) = Ln(1).

We recall intermediate computations of the groups LP,(F¥) and LT*(X,Y,Z)
from [14]. The computation of LP,-groups for a pair ¥ C X use the braid of
exact sequences (1.5) (see, also [19]). The natural map that forgets the manifold X

LSu(F*) = Lu(Z/27)
coincides with the map
In: BLn(%) — Ln—l(Z/ZZF)

in [12, page 35]. Using this result and chasing the diagram (1.5) we obtain the
computations (see also {13])

LP,(F*)= Z/2, Z/2, Z/2, I;
LP,(F7Y= Z, 1Z/2, Z/2, Z/2

forn =0, 1, 2, 3 (mod 4), respectively.
Using connections between these groups and the LT.(X,Y,Z)-groups, the
following result was obtained in [14].

Proposition 4.3 Let M™* be a closed simply connected topological manifold. For
the triple of manifolds

(Zn C Yn+1 cC Xn+2) —_ (Mn-k XRIPk cC Mn—k XR]Pyk-I-l C Mn—k XRPk+2)

with n > 5, we have the following results.
For k odd, the groups LT, are isomorphic to

ZSZL[2,L/2,ZSZ[2,Z]2
Jorn =0,1,2,3 (mod 4), respectively.
For k even, LTy = Z/2® Z/2 and LTy = Z/2. The groups LT3 and LT, fit
into an exact sequence

0—>LT3>Z—Z— LT, —>Z/2—0.

We apply these results to compute LS P,-groups in the situation above.
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Theorem 4.4 Under assumptions of the Proposition 4.3 we have the following
results.
For k odd, the groups LSP, are isomorphic to

7,7,2/2,7)2

forn =0,1,2,3 (mod 4), respectively.
For k even, we have isomorphisms LSPy =~ LSPy = Z/2. The groups LSP3
and LSP; fit into an exact sequence

00— LSP;s—~>Z —Z — LSP,— 0.

Proof: Consider the case when k is odd. From [14] we conclude that all the
maps LT, — LPy+1(F™) are epimorphisms. Now it is easy to describe the maps
LP,(Ft) = Lp+1(Z/27%) in diagram (1.5). For n = 1 mod 4 and n = 2 mod 4
these maps are isomorphisms Z /2 — Z /2. For n = 0 mod 4 the map is trivial since
the group L1(Z/27) is trivial. The map

Z=LPy(F) > Lo(Z/2")=Z &Z

is an inclusion on a direct summand. The image of this map coincides with the
image of the map Lo(1) — Lo(Z/2%) that is induced by the inclusion 1 — Z /2.
This follows from the commutative triangle

Z

I
LP3(F+)
gi;no\

Lo(l) —> Lo(Z/2+)

| I
zZ Z&L

in diagram (1.5). From diagram (3.4) we obtain an exact sequence
o= LTy = Ly4a(Z)2%) = LSPy_q = LTy—i —> -
The map 7 is the composition
LTy — LPy1(FT) = Lyya(Z/27)

of maps that we already know. Now we can compute the map z. It is trivial for
n = 3, an isomorphism Z/2 — Z /2 for n = 1, an epimorphism Z @ Z/2 - Z/2
with kernel Z for n = 0, and a homomorphism Z & Z /2 — Z @ Z with kernel Z/2
and cokernel Z for = 2. The result for & odd follows now from the exact sequence
(4.24). The case of k even is obtained in a similar way. O
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