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1. Introduction

Let 2 C RN (N > 2) be a bounded domain with smooth boundary 8£2. Let p(-) : 2 — (2, 00) be a continuous function
such that
] [ IVuP® dx
A= inf  =“——— > 0. (1)
uecP@\0) [, [uP® dx
We point out that property A; > 0 is not true for all functions p(-). For instance, assuming that there exists an open set
U C £2 and a point xg € U such that p(xp) < p(x) (or p(xo) > p(x)) for all x € dU, then by [1, Theorem 3.1] we get .; = 0.
On the other hand, there are results establishing sufficient conditions on p(-) for satisfying A; > 0. Indeed, it was proved
in[1, Theorem 3.3] that assuming that there exists a vector [ € RY \ {0} such that, forany x € £2, the function f (t) = p(x+tl)
is monotone, for t € I, := {s; x4 sl € 2} then A; > 0. Furthermore, it was shown in [2, Theorem 1] that (1) holds provided
that p(-) € C1(£2; R) and that there exists @ € C!(£2; RV) such that div'd (x) > ap > 0and @ (x) - Vp(x) = 0, for every
x € 2 (see also [3, Theorem 1] for similar results). Finally, we recall a very well-known fact that in the special case when
p(-) is a constant function (defined on the interval (1, c0)) then (1) holds.

Next, assume thatA : 2 — RN is a symmetric function matrix, i.e. a; = aj, such that a; € L*°(£2) N C'(£2) and

N
(AE. &) = > aj(0E& > |57, Vxe @, £ eRY, )

ij=1
where (-, -) denotes the scalar product on RV,
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In this paper we are concerned with the study of nonlinear and nonhomogeneous problems of the type

px)—2

—div (a(x, u) (AVu, Vu) 2 AVu) =f forxe £,
u=20 forx € 082,

(3)

where o : 2 x R — (0, 0o) represents a Carathéodory function, which depends on the space variable x and on the state
variable u and is far from zero and bounded above (see assumption (8)). This restriction was first introduced in the pioneering
paper by Arcoya and Boccardo [4] but it was no longer assumed in subsequent papers by Filippucci [5,6]. On the other hand,
f : 2 — Ris a measurable function belonging to a suitable Lebesgue type space which will be specified later on in the
paper.

The differential operator involved in Eq. (3) will be denoted by

px)—=2

ApyU = div (a(x, u) (AVu, Vu) 2 AVu)

and will be called the #p.)-Laplace operator. It represents a generalization of the p(-)-Laplace operator, i.e. Ayyu =
div(|Vu|P~2Vu), which is obtained in the case when A = Id and & = 1. In the last few decades special attention has
been paid to p(-)-Laplace type operators since they can model with sufficient accuracy the phenomena arising from the
study of electrorheological fluids [7,8], image restoration [9], mathematical biology [10], dielectric breakdown, electrical
resistivity and polycrystal plasticity [11,12] and they arise in the study of some models for the growth of heterogeneous
sandpiles [13]. In a similar context, we note that a collection of results obtained in the field of partial differential equations
involving p(-)-Laplace type operators can be found in the survey paper by Harjulehto et al. [14]. Finally, we recall that in
the case when p(-) is a constant function, problems involving 4,-Laplace type operators have been widely studied. In this
regard we point out the papers by Reshetnyak [15], Alvino et al. [16] and El Khalil et al. [17] and the references therein.

2. Areview on variable exponent spaces

In this section we provide a brief review of basic properties of the variable exponent Lebesgue-Sobolev spaces. For more
details we refer the reader to the book by Diening et al. [ 18] and the paper by [19].

In this paper we reduce all our discussion to the special case when £2 C RY is an open bounded set. For any continuous
functionp : 2 — (1, oo) we define

p~ = infp(x) and pT = supp(x).
xe2 xXe
Next, we define the variable exponent Lebesgue space [P©) (£2) by
rYR) = {u : 2 — R measurable : f [u)[P® dx < oo} )
o)

Clearly, I[P (£2) is a Banach space when endowed with the so-called Luxemburg norm, defined by

p(x)
[ulpe) = inf M>O:/ dx < 1¢.
2

We note that the variable exponent Lebesgue space is a special case of an Orlicz-Musielak space. For constant functions
p, [PO(£2) reduces to the classical Lebesgue space [P(£2), endowed with the standard norm

1/p
Nl = ( / Iu(x)lpdx) .
2

We recall that LP) (£2) is separable and reflexive. Since §2 is bounded, if p;, p, are variable exponents such that p; < p,
in £2, the embedding [720) (§£2) — IP10)(£2) is continuous and its norm does not exceed [§2| + 1.

We denote by P’ ) (£2) the conjugate space of [’)(£2), where 1/p(x)+1/p/(x) = 1.Foranyu € [’V (2) andv € [F'O(2)
the following Hoélder type inequality:

/ uv dx
Q
holds.

A key role in manipulating the variable exponent Lebesgue and Sobolev (see below) spaces is played by the modular of
the space [P*) (£2), which is the mapping p,() : [’V (£2) — R defined by

u(e)

1 1
S| =+ == ) lubpolvlyc (4)
(p‘ I’ ) p( e

oo @ = [ TucoP® dx.
2
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Ifu e I?(£2) then the following relations hold:

- +

|u|P(') >1= |u|g(A) =< pp(~)(u) =< |u|$(.); (5)
T _

|u|p(<) <1= |u|5(.) < Iop(-)(u) < |u|£(.); (6)

|U|p(4) =1< ,OP(A)(U) =1. (7)

The variable exponent Sobolev space W'-P0) (£2) is defined by
WPPO(2) := {u € IPV(R2) : |Vu| € PV (2)).

On this space one can consider the following norm:
lullpe) = lulpey + Vlpe),

where, in the above definition, |Vu|.) stands for the Luxemburg norm of | Vu|. We note that in the context of this discussion
W1PO(2) is also a separable and reflexive Banach space.
Finally, we define W(}‘” ”(Q) as the closure of C§°(£2) under the norm

lull = [Vulye.

Note that (Wol”’(') (£2), |I-1) is also a separable and reflexive Banach space. We remark thatif g : 2 — (1, co) is a continuous

function such that g(x) < p*(x) forallx € £ then the embedding Wol‘p(‘) (2) — L19(£2) is compact and continuous, where

pr(x) = NN_";’&) if p(x) < N or p*(x) = +o0if p(x) > N.

3. The main result
The main result of this paper is given by the following theorem.

Theorem 1. Assume that « : 2 x R — R is a Carathéodory function for which there exist two positive constants0 < A < A
such that

O<i<alxt)<A, aexef, VteR. (8)

Assume that conditions (1) and (2) from Section 1 are satisfied. Then for each f € 170 (82) there exists a weak solution of
problem (3), i.e. a function u € Wol’p(‘)(.Q) such that

px)—2

/oz(x, u)(AVu, Vu) 2 (AVu, Vo) dx:/f(pdx,
o) o)

forall g € WyPO(22).
4. Proof of the main result

Fix an arbitrary function f € 170 (£2). The main ingredient of our proof of Theorem 1 will be Schauder’s fixed point
theorem (see [20, Theorem 3.21]):

Schauder’s fixed point theorem. Assume that K is a compact and convex subset of the Banach space BandS : K — K isa
continuous map. Then S possesses a fixed point.

We start by proving some auxiliary results which will be useful in establishing Theorem 1.

Lemma 1. For each v € [PV (£2) the problem

P

—div (oc(x, v){(AVu, Vu) %_ZAVu) =f forxe £,
u=20 forx € 082,

has a weak solution u € w(}"’“(rz), ie.

px)—2
2

/a(x, v){AVu, Vu) (AVu, Vgo)dx:/ﬂpdx, (10)
2 2

forall p € WP ().

Proof. Fix v € [P¥)(£2). First, we note that condition (8) from Theorem 1 guarantees that a(x, v) € L®(£2).
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Consider the energy functional associated with problem (9),] : WOl P “(.{2) — R,

](u):f X ) 4Gy, gy dx—/fudx.
2 bR Q

Standard arguments imply that ] € C' (WO1 P (')(Q); R) with the derivative given by

J' (W), @) = / a(x, v) AV, Vu) 25 (AVu, V) dx = / Fodx,
2 2

forallu, ¢ € W1 p(')(.Q) Thus, weak solutions of problem (9) are exactly the critical points of the functional J.
Since (2) and (8) are fulfilled it follows that for each u € W1 be )(Q) with |Ju|| > 1 we have

J@Ww) > —/ [VulP® dx — /fudx

> ?llullp —clflpellull,

where c is a positive constant. The above estimate shows that J is coercive.
On the other hand, it was pointed out in [16, p. 449] that the following Clarkson’s type inequality:

(A5, £ + (A, &) 2<A<¥1+52)’51+¥2>5/2+< (glz&>’&z€2> ’ (1)

2 2 2

holds for all s > 2 and &;, &, € RN. Thus, we deduce that ] is convex and consequently weakly lower semi-continuous.
Since J is coercive and weakly lower semi-continuous we conclude via the Direct Method of the Calculus of Variations

(see, e.g.[21, Theorem 1.2]) that there exists a global minimum point of J,u € Wg’p(') (£2), and consequently a weak solution
of problem (9). The proof of Lemma 1 is thus complete. O

Next, for each v € [P () let u = T(v) € W, """ (£2) be the weak solution of problem (9) given by Lemma 1. Thus, we
can actually introduce an application T : [P0 (£2) — W, P (2) associating with each v € I?*)(£2) the solution of problem
(9). T(v) € Wy P (2).

Lemma 2. There exists C > 0, a universal constant such that
/ IVT()P® dx < C, Vv ePO(R). (12)
2
Proof. Taking ¢ = T(v) in (10) we find
/ a(x, V)(AVT(v), vr(u)>@ dx = / fTwydx, YvelPOR).
2 2
Taking into account relation (8) and condition (2), the above equality yields

x/ |VT(v)|p<")dx§/fT(v)dx, Vv e PY(R). (13)
k7] 2

Let now € > 0 be such that ¢ < min{1, A, A/X}. Then, by Young’s inequality (see, e.g., [22, the footnote on p. 56]) we
deduce

fEOT®) <

S FOPY +eTeE)PY, YoelPO(@), xe 2,

or, since € € (0, 1), there exists C, := ﬁ such that
€

FEOTOE) < CIF@PY + TP, YvelPY(R), xe Q.

Integrating the above estimate over £2 and taking into account that relations (1) and (13) hold we get
/ €
A/ VT (v)]P® dx < CE/ IFIP® dx + —f IVT()[P® dx, Vv e [PO(8).
2 2 )"1 2

Consequently, taking
Ce [ IFIP'® dx

A%

C:=

)

we infer that relation (12) holds true. The proof of Lemma 2 is thus also complete. O
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Remark 1. By Lemma 2 and relation (1) it clearly follows that there exists a universal constant C; > 0 such that

/ ITW)PPPdx < ¢, Vv elPPR).
2

Lemma 3. The map T : [P (22) — W, """ () is continuous.
Proof. Let (v,), v C [PV (£2) be such that v, converges to v in [P*)(£2) as n — 0. Set
u, .= T(vy), Vn.

By Lemma 2 we have
f [V, [P® dx = / IVT(v,)|P¥ dx < C, Vn,
2 2

i.e. (u,) is bounded on WO1 P0) (£2). It follows that by eventually passing to a subsequence we can conclude that u, converges

weakly to u in Wol'p(') (£2).
On the other hand, for each n we have

px)—2
2

/ a(x, vy)(AVu,, Vu,) 2 (AVuy,, Vo) dx = / fodx, (14)
Q Q

forallg € W(,l‘p<')(9). Taking ¢ = u, — u in the above equality it follows that

px)—2
2

/ a(x, vy){(AVu,, Vu,) (AVuy,, Vu, — Vu) dx = o(1).
2

This fact and relation (8) yield

p(X)—2
2

/ (AVu,, Vuy,) (AVu,, Vu, — Vu) dx = o(1). (15)
2

Next, by taking ¢ = u,, in (14) we get
/ o (x, vy) (AVuy, Vu,,)w dx = / fuy, dx,
2 2

for each n. Relation (8), Holder’s inequality, the Poincaré’s inequality and the fact that (u,) is bounded on Wol’p(') (£2) imply
that there exist some constants C;, C3 C4 > 0 such that

pX)
)L/ (AVuy, Vuy) 2 dx < / Jundx < GIflyolunlpe < Gllupll <Gy, Vn.
2 2

. ) . .
The above estimates assure that sequence ( f o AV, Vuy) - dx) is bounded. Therefore we can deduce that there exists
b > 0 such that, up to a subsequence,

lim [ (AVu,, Vi) dx = b.

n—oo 0

Furthermore, recalling relation (11) and the fact that p(x) > 2 for all x € £2, we deduce that the map
1.p() 2
Wy (R2) 3w — | (AVw, Vw) 2 dx e R, (16)
2
is convex and consequently weakly lower semi-continuous. Thus, we deduce

/ (AVu, Vi " dx < lim inf/ (AVuy, Vi) ' dx = b.
Q n—oo Q

On the other hand, using relation (A.2) in [16], i.e.
(A&, &)° = (A1, &1)° +5(AE1, &) 2 (AE1L & — &), VELEER", 5=2,

we obtain that

px)—2
2

/ (AVu, Vu)¥ dx > / (AVuy, Vun)MTX) dx+p~ / (AVuy,, Vuy,) (AVu,, Vu — Vu,)dx, Vn.
2 Q 2
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The above pieces of information and relation (15) show that
(X)
/ (AVu, Vu)'z" dx = b.
Q

Taking into account that ( %) converges weakly to u in WO1 0 (£2) and again invoking the weak lower semi-continuity of

the map defined in relation (16) we find

163

X 2
b=/(AVu, vu) s dxfliminf/ Ayttt Gln TUNE (17)
o n—oo [ 2 2

Assume by contradiction that (u,) does not converge (strongly) to u in Wol’p © (£2). Then there exist ¢ > 0 and a subsequence
of (uy), still denoted by (u,), such that

J

On the other hand, relations (11) and (2) imply

p(x)

Vu, — Vu
- dx>¢€, Vn.

2

p(x

p .163]

1 X 1 u u u u\ 2
f/(AVu,Vu)%dx—i-f/‘(AVun,Vun) ; dx—/ avintl gt dx
2 /5 2/, 5 2 2
pX)
u—u, u—u,\ 2
z/<AV v > dx
5 2 2
Vu — Vu, [P®
> —_— dx, Vn.
2

The last two estimates yield

P

. u, +u u, +u\ 2

b—ezllmsupf <AV t ,v2 > dx,
n— oo Q 2 2

which contradicts (17). Consequently, (u,) converges (strongly) to u in Wol’p(')(Q), orT : IPO(R) — Wol’p(‘)(Q) is
continuous. The proof of Lemma 3 is complete. O

Remark 2. Since W, ""(£2) is compactly embedded in [’ (£2) (i.e. the inclusion operator i : WyP"(2) — [P0(2) is
compact), it follows by Lemma 3 that the operator S : [P©)(£2) — [PV (£2),S =i o T, is compact.

Proof of Theorem 1. Let C; be the constant given in Remark 1, i.e.
/ ISW)P¥ dx < C;, Vv e PY(R).
2
Consider the ball

B, (0) := {v e PY(2): / [v]P® dx < cll )
2

Clearly, B¢, (0) is a convex closed subset of [’O(£2)and S (B¢, (0)) C Bc, (0). Moreover, by Remark 2, S(Bc, (0)) is relatively
compact in B, (0).

Finally, by Lemma 3 and Remark 2, S : B¢, (0) — Bc, (0) is a continuous map. Hence we can apply Schauder’s fixed point
theorem to obtain S with a fixed point. This gives us a weak solution to problem (3) and thus the proof of Theorem 1 is finally
complete. O
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