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a b s t r a c t

This paper establishes the existence of solutions for a partial differential equation in
which a differential operator involving variable exponent growth conditions is present.
This operator represents a generalization of the p(·)-Laplace operator, i.e. ∆p(·)u = div
(| ∇u |

p(·)−2
∇u), where p(·) is a continuous function. The proof of the main result is based

on Schauder’s fixed point theorem combined with adequate variational arguments. The
function space setting used here makes appeal to the variable exponent Lebesgue and
Sobolev spaces.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary ∂Ω . Let p(·) : Ω → (2, ∞) be a continuous function
such that

λ1 := inf
u∈C∞

0 (Ω)\{0}


Ω

|∇u|p(x) dx
Ω

|u|p(x) dx
> 0. (1)

We point out that property λ1 > 0 is not true for all functions p(·). For instance, assuming that there exists an open set
U ⊂ Ω and a point x0 ∈ U such that p(x0) < p(x) (or p(x0) > p(x)) for all x ∈ ∂U , then by [1, Theorem 3.1] we get λ1 = 0.
On the other hand, there are results establishing sufficient conditions on p(·) for satisfying λ1 > 0. Indeed, it was proved
in [1, Theorem 3.3] that assuming that there exists a vector l ∈ RN

\{0} such that, for any x ∈ Ω , the function f (t) = p(x+tl)
is monotone, for t ∈ Ix := {s; x+ sl ∈ Ω} then λ1 > 0. Furthermore, it was shown in [2, Theorem 1] that (1) holds provided
that p(·) ∈ C1(Ω; R) and that there exists −→a ∈ C1(Ω; RN) such that div−→a (x) ≥ a0 > 0 and −→a (x) · ∇p(x) = 0, for every
x ∈ Ω (see also [3, Theorem 1] for similar results). Finally, we recall a very well-known fact that in the special case when
p(·) is a constant function (defined on the interval (1, ∞)) then (1) holds.

Next, assume that A : Ω → RN2
is a symmetric function matrix, i.e. aij = aji, such that aij ∈ L∞(Ω) ∩ C1(Ω) and

⟨Aξ, ξ⟩ =

N−
i,j=1

aij(x)ξiξj ≥ |ξ |
2, ∀ x ∈ Ω, ξ ∈ RN , (2)

where ⟨·, ·⟩ denotes the scalar product on RN .
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In this paper we are concerned with the study of nonlinear and nonhomogeneous problems of the type
−div


α(x, u) ⟨A∇u, ∇u⟩

p(x)−2
2 A∇u


= f for x ∈ Ω,

u = 0 for x ∈ ∂Ω,
(3)

where α : Ω × R → (0, ∞) represents a Carathéodory function, which depends on the space variable x and on the state
variable u and is far fromzero and bounded above (see assumption (8)). This restrictionwas first introduced in the pioneering
paper by Arcoya and Boccardo [4] but it was no longer assumed in subsequent papers by Filippucci [5,6]. On the other hand,
f : Ω → R is a measurable function belonging to a suitable Lebesgue type space which will be specified later on in the
paper.

The differential operator involved in Eq. (3) will be denoted by

Ap(·)u := div

α(x, u) ⟨A∇u, ∇u⟩

p(x)−2
2 A∇u


and will be called the Ap(·)-Laplace operator. It represents a generalization of the p(·)-Laplace operator, i.e. ∆p(·)u =

div(|∇u|p(·)−2
∇u), which is obtained in the case when A = Id and α ≡ 1. In the last few decades special attention has

been paid to p(·)-Laplace type operators since they can model with sufficient accuracy the phenomena arising from the
study of electrorheological fluids [7,8], image restoration [9], mathematical biology [10], dielectric breakdown, electrical
resistivity and polycrystal plasticity [11,12] and they arise in the study of some models for the growth of heterogeneous
sandpiles [13]. In a similar context, we note that a collection of results obtained in the field of partial differential equations
involving p(·)-Laplace type operators can be found in the survey paper by Harjulehto et al. [14]. Finally, we recall that in
the case when p(·) is a constant function, problems involving Ap-Laplace type operators have been widely studied. In this
regard we point out the papers by Reshetnyak [15], Alvino et al. [16] and El Khalil et al. [17] and the references therein.

2. A review on variable exponent spaces

In this section we provide a brief review of basic properties of the variable exponent Lebesgue–Sobolev spaces. For more
details we refer the reader to the book by Diening et al. [18] and the paper by [19].

In this paper we reduce all our discussion to the special case when Ω ⊂ RN is an open bounded set. For any continuous
function p : Ω → (1, ∞) we define

p−
:= inf

x∈Ω
p(x) and p+

:= sup
x∈Ω

p(x).

Next, we define the variable exponent Lebesgue space Lp(·)(Ω) by

Lp(·)(Ω) =


u : Ω → R measurable :

∫
Ω

|u(x)|p(x) dx < ∞


.

Clearly, Lp(·)(Ω) is a Banach space when endowed with the so-called Luxemburg norm, defined by

|u|p(·) := inf


µ > 0 :

∫
Ω

u(x)µ

p(x) dx ≤ 1


.

We note that the variable exponent Lebesgue space is a special case of an Orlicz–Musielak space. For constant functions
p, Lp(·)(Ω) reduces to the classical Lebesgue space Lp(Ω), endowed with the standard norm

‖u‖Lp(Ω) :=

∫
Ω

|u(x)|pdx
1/p

.

We recall that Lp(·)(Ω) is separable and reflexive. Since Ω is bounded, if p1, p2 are variable exponents such that p1 ≤ p2
in Ω , the embedding Lp2(·)(Ω) ↩→ Lp1(·)(Ω) is continuous and its norm does not exceed |Ω| + 1.

We denote by Lp
′(·)(Ω) the conjugate space of Lp(·)(Ω), where 1/p(x)+1/p′(x) = 1. For any u ∈ Lp(·)(Ω) and v ∈ Lp

′(·)(Ω)
the following Hölder type inequality:∫

Ω

uv dx
 ≤


1
p−

+
1
p′−


|u|p(·)|v|p′(·) (4)

holds.
A key role in manipulating the variable exponent Lebesgue and Sobolev (see below) spaces is played by the modular of

the space Lp(·)(Ω), which is the mapping ρp(·) : Lp(·)(Ω) → R defined by

ρp(·)(u) :=

∫
Ω

|u(x)|p(x) dx.
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If u ∈ Lp(·)(Ω) then the following relations hold:

|u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρp(·)(u) ≤ |u|p
+

p(·); (5)

|u|p(·) < 1 ⇒ |u|p
+

p(·) ≤ ρp(·)(u) ≤ |u|p
−

p(·); (6)

|u|p(·) = 1 ⇔ ρp(·)(u) = 1. (7)

The variable exponent Sobolev spaceW 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) := {u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)}.

On this space one can consider the following norm:

‖u‖p(·) := |u|p(·) + |∇u|p(·),

where, in the above definition, |∇u|p(·) stands for the Luxemburg normof |∇u|.We note that in the context of this discussion
W 1,p(·)(Ω) is also a separable and reflexive Banach space.

Finally, we defineW 1,p(·)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖ = |∇u|p(·).

Note that (W 1,p(·)
0 (Ω), ‖·‖) is also a separable and reflexive Banach space.We remark that if q : Ω → (1, ∞) is a continuous

function such that q(x) < p⋆(x) for all x ∈ Ω then the embeddingW 1,p(·)
0 (Ω) ↩→ Lq(·)(Ω) is compact and continuous, where

p⋆(x) =
Np(x)
N−p(x) if p(x) < N or p⋆(x) = +∞ if p(x) ≥ N .

3. The main result

The main result of this paper is given by the following theorem.

Theorem 1. Assume that α : Ω × R → R is a Carathéodory function for which there exist two positive constants 0 < λ ≤ Λ

such that

0 < λ ≤ α(x, t) ≤ Λ, a.e. x ∈ Ω, ∀ t ∈ R. (8)

Assume that conditions (1) and (2) from Section 1 are satisfied. Then for each f ∈ Lp
′(·)(Ω) there exists a weak solution of

problem (3), i.e. a function u ∈ W 1,p(·)
0 (Ω) such that∫

Ω

α(x, u)⟨A∇u, ∇u⟩
p(x)−2

2 ⟨A∇u, ∇ϕ⟩ dx =

∫
Ω

f ϕ dx,

for all ϕ ∈ W 1,p(·)
0 (Ω).

4. Proof of the main result

Fix an arbitrary function f ∈ Lp
′(·)(Ω). The main ingredient of our proof of Theorem 1 will be Schauder’s fixed point

theorem (see [20, Theorem 3.21]):

Schauder’s fixed point theorem. Assume that K is a compact and convex subset of the Banach space B and S : K → K is a
continuous map. Then S possesses a fixed point.

We start by proving some auxiliary results which will be useful in establishing Theorem 1.

Lemma 1. For each v ∈ Lp(·)(Ω) the problem
−div


α(x, v)⟨A∇u, ∇u⟩

p(x)−2
2 A∇u


= f for x ∈ Ω,

u = 0 for x ∈ ∂Ω,
(9)

has a weak solution u ∈ W 1,p(·)
0 (Ω), i.e.∫

Ω

α(x, v)⟨A∇u, ∇u⟩
p(x)−2

2 ⟨A∇u, ∇ϕ⟩ dx =

∫
Ω

f ϕ dx, (10)

for all ϕ ∈ W 1,p(·)
0 (Ω).

Proof. Fix v ∈ Lp(·)(Ω). First, we note that condition (8) from Theorem 1 guarantees that α(x, v) ∈ L∞(Ω).
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Consider the energy functional associated with problem (9), J : W 1,p(·)
0 (Ω) → R,

J(u) =

∫
Ω

α(x, v)

p(x)
⟨A∇u, ∇u⟩p(x)/2 dx −

∫
Ω

fu dx.

Standard arguments imply that J ∈ C1(W 1,p(·)
0 (Ω); R) with the derivative given by

⟨J ′(u), ϕ⟩ =

∫
Ω

α(x, v)⟨A∇u, ∇u⟩
p(x)−2

2 ⟨A∇u, ∇ϕ⟩ dx =

∫
Ω

f ϕ dx,

for all u, ϕ ∈ W 1,p(·)
0 (Ω). Thus, weak solutions of problem (9) are exactly the critical points of the functional J .

Since (2) and (8) are fulfilled it follows that for each u ∈ W 1,p(·)
0 (Ω) with ‖u‖ > 1 we have

J(u) ≥
λ

p+

∫
Ω

|∇u|p(x) dx −

∫
Ω

fu dx

≥
λ

p+
‖u‖p−

− c|f |p′(·)‖u‖,

where c is a positive constant. The above estimate shows that J is coercive.
On the other hand, it was pointed out in [16, p. 449] that the following Clarkson’s type inequality:

⟨Aξ1, ξ1⟩
s/2

+ ⟨Aξ2, ξ2⟩
s/2

2
≥


A


ξ1 + ξ2

2


,
ξ1 + ξ2

2

s/2
+


A


ξ1 − ξ2

2


,
ξ1 − ξ2

2

s/2
, (11)

holds for all s ≥ 2 and ξ1, ξ2 ∈ RN . Thus, we deduce that J is convex and consequently weakly lower semi-continuous.
Since J is coercive and weakly lower semi-continuous we conclude via the Direct Method of the Calculus of Variations

(see, e.g. [21, Theorem 1.2]) that there exists a global minimum point of J , u ∈ W 1,p(·)
0 (Ω), and consequently a weak solution

of problem (9). The proof of Lemma 1 is thus complete. �

Next, for each v ∈ Lp(·)(Ω) let u = T (v) ∈ W 1,p(·)
0 (Ω) be the weak solution of problem (9) given by Lemma 1. Thus, we

can actually introduce an application T : Lp(·)(Ω) → W 1,p(·)
0 (Ω) associating with each v ∈ Lp(·)(Ω) the solution of problem

(9), T (v) ∈ W 1,p(·)
0 (Ω).

Lemma 2. There exists C > 0, a universal constant such that∫
Ω

|∇T (v)|p(x) dx ≤ C, ∀ v ∈ Lp(·)(Ω). (12)

Proof. Taking ϕ = T (v) in (10) we find∫
Ω

α(x, v)⟨A∇T (v), ∇T (v)⟩
p(x)
2 dx =

∫
Ω

fT (v) dx, ∀ v ∈ Lp(·)(Ω).

Taking into account relation (8) and condition (2), the above equality yields

λ

∫
Ω

|∇T (v)|p(x) dx ≤

∫
Ω

fT (v) dx, ∀ v ∈ Lp(·)(Ω). (13)

Let now ϵ > 0 be such that ϵ < min{1, λ, λ/λ1}. Then, by Young’s inequality (see, e.g., [22, the footnote on p. 56]) we
deduce

f (x)T (v(x)) ≤
1

ϵp(x)−1
|f (x)|p

′(x)
+ ϵ|T (v(x))|p(x), ∀ v ∈ Lp(·)(Ω), x ∈ Ω,

or, since ϵ ∈ (0, 1), there exists Cϵ :=
1

ϵp
+−1 such that

f (x)T (v(x)) ≤ Cϵ |f (x)|p
′(x)

+ ϵ|T (v(x))|p(x), ∀ v ∈ Lp(·)(Ω), x ∈ Ω.

Integrating the above estimate over Ω and taking into account that relations (1) and (13) hold we get

λ

∫
Ω

|∇T (v)|p(x) dx ≤ Cϵ

∫
Ω

|f |p
′(x) dx +

ϵ

λ1

∫
Ω

|∇T (v)|p(x) dx, ∀ v ∈ Lp(·)(Ω).

Consequently, taking

C :=
Cϵ


Ω

|f |p
′(x) dx

λ −
ϵ
λ1

,

we infer that relation (12) holds true. The proof of Lemma 2 is thus also complete. �
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Remark 1. By Lemma 2 and relation (1) it clearly follows that there exists a universal constant C1 > 0 such that∫
Ω

|T (v)|p(x) dx ≤ C1, ∀ v ∈ Lp(·)(Ω).

Lemma 3. The map T : Lp(·)(Ω) → W 1,p(·)
0 (Ω) is continuous.

Proof. Let (vn), v ⊂ Lp(·)(Ω) be such that vn converges to v in Lp(·)(Ω) as n → ∞. Set

un := T (vn), ∀ n.

By Lemma 2 we have∫
Ω

|∇un|
p(x) dx =

∫
Ω

|∇T (vn)|
p(x) dx ≤ C, ∀ n,

i.e. (un) is bounded onW 1,p(·)
0 (Ω). It follows that by eventually passing to a subsequence we can conclude that un converges

weakly to u in W 1,p(·)
0 (Ω).

On the other hand, for each nwe have∫
Ω

α(x, vn)⟨A∇un, ∇un⟩
p(x)−2

2 ⟨A∇un, ∇ϕ⟩ dx =

∫
Ω

f ϕ dx, (14)

for all ϕ ∈ W 1,p(·)
0 (Ω). Taking ϕ = un − u in the above equality it follows that∫

Ω

α(x, vn)⟨A∇un, ∇un⟩
p(x)−2

2 ⟨A∇un, ∇un − ∇u⟩ dx = o(1).

This fact and relation (8) yield∫
Ω

⟨A∇un, ∇un⟩
p(x)−2

2 ⟨A∇un, ∇un − ∇u⟩ dx = o(1). (15)

Next, by taking ϕ = un in (14) we get∫
Ω

α(x, vn)⟨A∇un, ∇un⟩
p(x)
2 dx =

∫
Ω

fun dx,

for each n. Relation (8), Hölder’s inequality, the Poincaré’s inequality and the fact that (un) is bounded on W 1,p(·)
0 (Ω) imply

that there exist some constants C2, C3 C4 > 0 such that

λ

∫
Ω

⟨A∇un, ∇un⟩
p(x)
2 dx ≤

∫
Ω

fun dx ≤ C2|f |p′(·)|un|p(·) ≤ C3‖un‖ ≤ C4, ∀ n.

The above estimates assure that sequence (


Ω
⟨A∇un, ∇un⟩

p(x)
2 dx) is bounded. Therefore we can deduce that there exists

b > 0 such that, up to a subsequence,

lim
n→∞

∫
Ω

⟨A∇un, ∇un⟩
p(x)
2 dx = b.

Furthermore, recalling relation (11) and the fact that p(x) ≥ 2 for all x ∈ Ω , we deduce that the map

W 1,p(·)
0 (Ω) ∋ w →

∫
Ω

⟨A∇w, ∇w⟩
p(x)
2 dx ∈ R, (16)

is convex and consequently weakly lower semi-continuous. Thus, we deduce∫
Ω

⟨A∇u, ∇u⟩
p(x)
2 dx ≤ lim inf

n→∞

∫
Ω

⟨A∇un, ∇un⟩
p(x)
2 dx = b.

On the other hand, using relation (A.2) in [16], i.e.

⟨Aξ2, ξ2⟩
s
≥ ⟨Aξ1, ξ1⟩

s
+ s⟨Aξ1, ξ1⟩

s−2
⟨Aξ1, ξ2 − ξ1⟩, ∀ ξ1, ξ2 ∈ Rn, s ≥ 2,

we obtain that∫
Ω

⟨A∇u, ∇u⟩
p(x)
2 dx ≥

∫
Ω

⟨A∇un, ∇un⟩
p(x)
2 dx + p−

∫
Ω

⟨A∇un, ∇un⟩
p(x)−2

2 ⟨A∇un, ∇u − ∇un⟩ dx, ∀ n.
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The above pieces of information and relation (15) show that∫
Ω

⟨A∇u, ∇u⟩
p(x)
2 dx = b.

Taking into account that ( un+u
2 ) converges weakly to u inW 1,p(·)

0 (Ω) and again invoking the weak lower semi-continuity of
the map defined in relation (16) we find

b =

∫
Ω

⟨A∇u, ∇u⟩
p(x)
2 dx ≤ lim inf

n→∞

∫
Ω


A∇

un + u
2

, ∇
un + u

2

 p(x)
2

dx. (17)

Assume by contradiction that (un) does not converge (strongly) to u inW 1,p(·)
0 (Ω). Then there exist ϵ > 0 and a subsequence

of (un), still denoted by (un), such that∫
Ω

∇un − ∇u
2

p(x) dx ≥ ϵ, ∀ n.

On the other hand, relations (11) and (2) imply

1
2

∫
Ω

⟨A∇u, ∇u⟩
p(x)
2 dx +

1
2

∫
Ω

⟨A∇un, ∇un⟩
p(x)
2 dx −

∫
Ω


A∇

un + u
2

, ∇
un + u

2

 p(x)
2

dx

≥

∫
Ω


A∇

u − un

2
, ∇

u − un

2

 p(x)
2

dx

≥

∫
Ω

∇u − ∇un

2

p(x) dx, ∀ n.

The last two estimates yield

b − ϵ ≥ lim sup
n→∞

∫
Ω


A∇

un + u
2

, ∇
un + u

2

 p(x)
2

dx,

which contradicts (17). Consequently, (un) converges (strongly) to u in W 1,p(·)
0 (Ω), or T : Lp(·)(Ω) → W 1,p(·)

0 (Ω) is
continuous. The proof of Lemma 3 is complete. �

Remark 2. Since W 1,p(·)
0 (Ω) is compactly embedded in Lp(·)(Ω) (i.e. the inclusion operator i : W 1,p(·)

0 (Ω) → Lp(·)(Ω) is
compact), it follows by Lemma 3 that the operator S : Lp(·)(Ω) → Lp(·)(Ω), S = i ◦ T , is compact.

Proof of Theorem 1. Let C1 be the constant given in Remark 1, i.e.∫
Ω

|S(v)|p(x) dx ≤ C1, ∀ v ∈ Lp(·)(Ω).

Consider the ball

BC1(0) :=


v ∈ Lp(·)(Ω) :

∫
Ω

|v|
p(x) dx ≤ C1


.

Clearly, BC1(0) is a convex closed subset of Lp(·)(Ω) and S(BC1(0)) ⊂ BC1(0). Moreover, by Remark 2, S(BC1(0)) is relatively
compact in BC1(0).

Finally, by Lemma 3 and Remark 2, S : BC1(0) → BC1(0) is a continuous map. Hence we can apply Schauder’s fixed point
theorem to obtain S with a fixed point. This gives us aweak solution to problem (3) and thus the proof of Theorem 1 is finally
complete. �
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